首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The compound diisopropylfluorophosphate (DFP) selectively inhibits an inositol deacylase activity in living trypanosomes that, together with the previously described phenylmethylsulfonyl fluoride (PMSF)-sensitive inositol acyltransferase, maintains a dynamic equilibrium between the glycosylphosphatidylinositol (GPI) anchor precursor, glycolipid A [NH2(CH2)2PO4-6Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-sn-1,2-dimyristoylglycerol], and its inositol acylated form, glycolipid C. Experiments using DFP in living trypanosomes and a trypanosome cell-free system suggest that earlier GPI intermediates are also in equilibrium between their inositol acylated and nonacylated forms. However, unlike mammalian and yeast cells, bloodstream form trypanosomes do not appear to produce an inositol acylated form of glucosaminylphosphatidylinositol (GlcN-PI). A specific function of inositol acylation in trypanosomes may be to enhance the efficiency of ethanolamine phosphate addition to the Man3GlcN-(acyl)PI intermediate. Inositol deacylation appears to be a prerequisite for fatty acid remodelling of GPI intermediates that leads to the exclusive presence of myristic acid in glycolipid A and, ultimately, in the variant surface glycoprotein (VSG). In the presence of DFP, the de novo synthesis of GPI precursors cannot proceed beyond glycolipid C' (the unremodelled version of glycolipid C) and lyso-glycolipid C'. Under these conditions glycolipid C'-type GPI anchors appear on newly synthesized VSG molecules. However, the efficiencies of both anchor addition to VSG and N-glycosylation of VSG were significantly reduced. A modified model of the GPI biosynthetic pathway in bloodstream form African trypanosomes incorporating these findings is presented.  相似文献   

2.
The genome of the African trypanosome Trypanosoma brucei (Tb) contains at least three gene families (TbMSP-A, -B, and -C) encoding homologues of the abundant major surface protease (MSP, previously called GP63), which is found in all Leishmania species. TbMSP-B mRNA occurs in both procyclic and bloodstream trypanosomes, whereas TbMSP-A and -C mRNAs are detected only in bloodstream organisms. RNA interference (RNAi)-mediated gene silencing was used to investigate the function of TbMSP-B protein. RNAi directed against TbMSP-B but not TbMSP-A ablated the steady state TbMSP-B mRNA levels in both procyclic and bloodstream cells but had no effect on the kinetics of cultured trypanosome growth in either stage. Procyclic trypanosomes have been shown previously to have an uncharacterized cell surface metalloprotease activity that can release ectopically expressed surface proteins. To determine whether TbMSP-B is responsible for this release, transgenic variant surface glycoprotein 117 (VSG117) was expressed constitutively in T. brucei procyclic TbMSP-RNAi cell lines, and the amount of surface VSG117 was determined using a surface biotinylation assay. Ablation of TbMSP-B but not TbMSP-A mRNA resulted in a marked decrease in VSG release with a concomitant increase in steady state cell-associated VSG117, indicating that TbMSP-B mediates the surface protease activity of procyclic trypanosomes. This finding is consistent with previous pharmacological studies showing that peptidomimetic collagenase inhibitors block release of transgenic VSG from procyclic trypanosomes and are toxic for bloodstream but not procyclic organisms.  相似文献   

3.
The Trypanosoma brucei genome encodes three groups of zinc metalloproteases, each of which contains approximately 30% amino acid identity with the major surface protease (MSP, also called GP63) of Leishmania. One of these proteases, TbMSP-B, is encoded by four nearly identical, tandem genes transcribed in both bloodstream and procyclic trypanosomes. Earlier work showed that RNA interference against TbMSP-B prevents release of a recombinant variant surface glycoprotein (VSG) from procyclic trypanosomes. Here, we used gene deletions to show that TbMSP-B and a phospholipase C (GPI-PLC) act in concert to remove native VSG during differentiation of bloodstream trypanosomes to procyclic form. When the four tandem TbMSP-B genes were deleted from both chromosomal alleles, bloodstream B (-/-) trypanosomes could still differentiate to procyclic form, but VSG was removed more slowly and in a non-truncated form compared to differentiation of wild-type organisms. Similarly, when both alleles of the single-copy GPI-PLC gene were deleted, bloodstream PLC (-/-) cells could still differentiate. However, when all the genes for both TbMSP-B and GPI-PLC were deleted from the diploid genome, the bloodstream B (-/-) PLC (-/-) trypanosomes did not proliferate in the differentiation medium, and 60% of the VSG remained on the cell surface. Inhibitors of cysteine proteases did not affect this result. These findings demonstrate that removal of 60% of the VSG during differentiation from bloodstream to procyclic form is due to the synergistic activities of GPI-PLC and TbMSP-B.  相似文献   

4.
In the mammalian host, the cell surface of Trypanosoma brucei is protected by a variant surface glycoprotein that is anchored in the plasma membrane through covalent attachment of the COOH terminus to a glycosylphosphatidylinositol. The trypanosome also contains a phospholipase C (GPI-PLC) that cleaves this anchor and could thus potentially enable the trypanosome to shed the surface coat of VSG. Indeed, release of the surface VSG can be observed within a few minutes on lysis of trypanosomes in vitro. To investigate whether the ability to cleave the membrane anchor of the VSG is an essential function of the enzyme in vivo, a GPI-PLC null mutant trypanosome has been generated by targeted gene deletion. The mutant trypanosomes are fully viable; they can go through an entire life cycle and maintain a persistent infection in mice. Thus the GPI-PLC is not an essential activity and is not necessary for antigenic variation. However, mice infected with the mutant trypanosomes have a reduced parasitemia and survive longer than those infected with control trypanosomes. This phenotype is partially alleviated when the null mutant is modified to express low levels of GPI-PLC.  相似文献   

5.
The surface coat of Trypanosoma brucei is composed of 10(7) molecules of the variant surface glycoprotein (VSG). Each VSG molecule is tethered to the cell membrane by a glycolipid moiety which contains 1,2-dimyristoyl-sn-phosphatidylinositol (Ferguson, M. A. J., Low, M. G., and Cross, G. A. M. (1985) J. Biol. Chem. 260, 14547-14555). Following cell lysis, an endogenous phospholipase C cleaves dimyristoyl glycerol from the glycolipid, releasing soluble VSG. We have purified this enzyme, which we designate VSG lipase, by detergent extraction, (NH4)2SO4 fractionation, hydrophobic chromatography, and cation exchange chromatography. It is purified 2600-fold and is virtually homogeneous. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the apparent molecular mass is 37 kDa. In solutions containing the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), the Stokes radius (2.6 nm), S20,w (3.7 S), and v (0.77 cm3/g) of VSG lipase suggest a molecular mass for the native enzyme of about 47 kDa, part of which may be due to bound CHAPS. Therefore, it is probably monomeric. VSG lipase does not require Ca2+; it is stimulated by chelating agents or dithiothreitol, and it is inhibited by some sulfhydryl reagents. The purified enzyme appears to be highly specific. Under the conditions of our assay, it cleaves the VSG glycolipid, a biosynthetic precursor of the VSG glycolipid, and, to a much lesser extent, 1,2-dimyristoyl-sn-phosphatidylinositol. There was no apparent cleavage of other myristate-containing lipids of trypanosomes or 1-stearoyl-2-arachidonoyl-sn-phosphatidylinositol.  相似文献   

6.
7.
We established an in vitro assay for the addition of glycosyl-phosphatidylinositol (GPI) anchors to proteins using procyclic trypanosomes engineered to express GPI-anchored variant surface glycoprotein (VSG). The assay is based on the premise that small nucleophiles, such as hydrazine, can substitute for the GPI moiety and effect displacement of the membrane anchor of a GPI-anchored protein or pro-protein causing release of the protein into the aqueous medium. Cell membranes containing pulse-radiolabeled VSG were incubated with hydrazine, and the VSG released from the membranes was measured by carbonate extraction, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis/fluorography. Release of VSG was time- and temperature-dependent, was stimulated by hydrazine, and occurred only for VSG molecules situated in early compartments of the secretory pathway. No nucleophile-induced VSG release was seen in membranes prepared from cells expressing a VSG variant with a conventional transmembrane anchor (i.e. a nonfunctional GPI signal sequence). Pro-VSG was shown to be a substrate in the reaction by assaying membranes prepared from cells treated with mannosamine, a GPI biosynthesis inhibitor. When a biotinylated derivative of hydrazine was used instead of hydrazine, the released VSG could be precipitated with streptavidin-agarose, indicating that the biotin moiety was covalently incorporated into the protein. Hydrazine was shown to block the C terminus of the released VSG hydrazide because the released material, unlike a truncated form of VSG lacking a GPI signal sequence, was not susceptible to proteolysis by carboxypeptidases. These results firmly establish that the released material in our assay is VSG hydrazide and strengthen the proof that GPI anchoring proceeds via a transamidation reaction mechanism. The reaction could be inhibited with sulfhydryl alkylating reagents, suggesting that the transamidase enzyme contains a functionally important sulfhydryl residue.  相似文献   

8.
9.
Telomere-linked genes coding for the variant surface glycoproteins (VSGs) of African trypanosomes have been difficult to clone because their flanking regions frequently lack restriction sites. Therefore, we constructed a genomic DNA library of fragments generated by digestion of purified trypanosome DNA with mung bean nuclease, an enzyme that cleaves before and after genes in Plasmodium falciparum DNA (McCutchan, T. F., Hansen, J. L., Dame, J. B., and Mullins, J. A. (1984) Science 225, 625-628). Southern hybridizations with several gene probes showed that under the appropriate conditions mung bean nuclease produces discrete trypanosome DNA fragments that are as clearly resolved on an agarose gel as restriction fragments. The majority of VSG genes are on fragments of about 1.7 kilobase pairs. To examine the sites of mung bean nuclease cleavage, the insert boundary sequences of eight recombinant clones in the library containing VSG genes were determined. In general, mung bean nuclease cleaved 300-800 base pairs in front of the VSG start codon and within 50 base pairs on either side of the termination codon. These regions also form the boundaries of VSG gene conversion events indicating that the enzyme recognizes, in part, a conformational structure rather than a specific sequence. The analyzed clones included both telomere-linked and interior basic copy VSG genes indicating that the library potentially contains all of the telomere-linked VSG genes in the genome.  相似文献   

10.
Trypanosome variant surface glycoproteins (VSGs) have a novel glycan-phosphatidylinositol membrane anchor, which is cleavable by a phosphatidylinositol-specific phospholipase C. A similar structure serves to anchor some membrane proteins in mammalian cells. Using kinetic and ultrastructural approaches, we have addressed the question of whether this structure directs the protein to the cell surface by a different pathway from the classical one described in other cell types for plasma membrane and secreted glycoproteins. By immunogold labeling on thin cryosections we were able to show that, intracellularly, VSG is associated with the rough endoplasmic reticulum, all Golgi cisternae, and tubulovesicular elements and flattened cisternae, which form a network in the area adjacent to the trans side of the Golgi apparatus. Our data suggest that, although the glycan-phosphatidylinositol anchor is added in the endoplasmic reticulum, VSG is nevertheless subsequently transported along the classical intracellular route for glycoproteins, and is delivered to the flagellar pocket, where it is integrated into the surface coat. Treatment of trypanosomes with 1 microM monensin had no effect on VSG transport, although dilation of the trans-Golgi stacks and lysosomes occurred immediately. Incubation of trypanosomes at 20 degrees C, a treatment that arrests intracellular transport from the trans-Golgi region to the cell surface in mammalian cells, caused the accumulation of VSG molecules in structures of the trans-Golgi network, and retarded the incorporation of newly synthesized VSG into the surface coat.  相似文献   

11.
Release and purification of Trypanosoma brucei variant surface glycoprotein   总被引:5,自引:0,他引:5  
Conditions affecting the solubilization of variant surface glycoprotein (VSG) from Trypanosoma brucei have been investigated. The results obtained form the basis for a convenient and efficient method for VSG purification. VSG release from the cell surface was temperature-dependent, following osmotic lysis at 0 degree C, and was inhibited by low concentrations of Zn2+ but not by tosyl-lysine chloromethyl-ketone (TLCK), phenylmethylsulfonylfluoride (PMSF), or iodoacetamide. These and other results eliminated the possibility that release was due to proteolytic cleavage of the C-terminal hydrophobic tail present on newly synthesized VSG. Bolton and Hunter reagent reacted with several components on living cells.  相似文献   

12.
African trypanosomes undergo antigenic variation of their variant surface glycoprotein (VSG) coat to avoid immune system-mediated killing by their mammalian host. An important mechanism for switching the expressed VSG gene is the duplicative transposition of a silent VSG gene into one of the telomeric VSG expression sites of the trypanosome, resulting in the replacement of the previously expressed VSG gene. This process appears to be a gene conversion reaction, and it has been postulated that sequences within the expression site may act to initiate and direct the reaction. All bloodstream form expression sites contain huge arrays (many kilobase pairs) of 70-bp repeat sequences that act as the 5' boundary of gene conversion reactions involving most silent VSG genes. For this reason, the 70-bp repeats seemed a likely candidate to be involved in the initiation of switching. Here, we show that deletion of the 70-bp repeats from the active expression site does not affect duplicative transposition of VSG genes from silent expression sites. We conclude that the 70-bp repeats do not appear to function as indispensable initiation sites for duplicative transposition and are unlikely to be the recognition sequence for a sequence-specific enzyme which initiates recombination-based VSG switching.  相似文献   

13.
The majority of Trypanosoma evansi can be detected using diagnostic tests based on the variant surface glycoprotein (VSG) of Trypanosoma evansi Rode Trypanozoon antigen type (RoTat) 1.2. Exceptions are a number of T. evansi isolated in Kenya. To characterize T. evansi that are undetected by RoTat 1.2, we cloned and sequenced the VSG cDNA from T. evansi JN 2118Hu, an isolate devoid of the RoTat 1.2 VSG gene. A 273 bp DNA segment of the VSG gene was targeted in PCR amplification for the detection of non-RoTat 1.2 T. evansi. Genomic DNA samples from different trypanosomes were tested including 32 T. evansi, 10 Trypanosoma brucei, three Trypanosoma congolense, and one Trypanosoma vivax. Comparison was by PCR amplification of a 488 bp fragment of RoTat1.2 VSG gene. Results showed that the expected 273 bp amplification product was present in all five non-RoTat 1.2 T. evansi tested and was absent in all 27 RoTat 1.2-positive T. evansi tested. It was also absent in all other trypanosomes tested. The PCR test developed in this study is specific for non-RoTat 1.2 T. evansi.  相似文献   

14.
15.
African trypanosomes are covered by a dense protein layer that is immunologically distinct on different trypanosome isolates and is termed the variant surface glycoprotein (VSG). The different VSGs are expressed in a general order, where some VSGs appear preferentially early in infection and others only later. The exposed epitopes on a late antigen, VSG 78, of T.equiperdum were studied by the technique of monoclonal antibody (MAb) escape selection. MAbs that neutralize trypanosomes bearing VSG 78 reacted with the VSG only when it was attached to the trypanosome surface, suggesting that the most immunogenic surface epitopes are conformational. Trypanosome clones resistant to one of the MAbs yet still expressing VSG 78 or 78(20) were isolated in vitro. Two independent variants resistant to MAb H3 changed Ser192 to Arg by a single base change in the VSG gene and a variant resistant to MAb H21 had a single base change that converted Gln172 to Glu. A variant resistant to MAb H7 had several changes in the VSG gene, a gene conversion in the 5' region and an isolated mutation in codon 220 that is proposed to be responsible for the resistance phenotype. The isotypic bias of the MAbs against VSG 78 and an analysis of the natural variants that are resistant to MAb 78H21 suggest that glycosylation plays a role in the immunogenicity of these proteins. The analysis defines some of the exposed amino acid residues and demonstrates that VSG genes are altered by mutations and small gene conversions as well as replaced by large gene conversion-like events. The results provide biological data supporting the model of VSG structure obtained by crystallographic studies.  相似文献   

16.
17.
18.
To study the evolution of the variant surface glycoprotein (VSG) repertoire of trypanosomes we have analysed the DNA region surrounding the VSG 118 gene in different trypanosome strains. We find a remarkable degree of variation in this area. Downstream from the 118 gene a 5.7 X 10(3) base-pair DNA segment containing a potential VSG gene has been quadruplicated in strain 427 of Trypanosoma brucei, but not in most other strains analysed. The VSG 1.1000 gene, located immediately upstream from the 118 gene in one trypanosome strain, has been cleanly deleted in another. Our results are most easily explained by multiple unequal cross-overs between sister chromatids and are the first indication that sister chromatid exchange occurs in trypanosomes.  相似文献   

19.
Some variable surface glycoprotein (VSG) genes of Trypanosoma brucei undergo duplication and transposition when they are expressed. We report here the cloning of cDNAs coding for two VSGs from the ILtar 1 repertoire. Analysis of the genomes of trypanosomes expressing these and other antigens shows that there is no additional copy of the sequences coding for eight VSG in expressing clones of trypanosomes, and reveals rearrangements analogous to those previously described for the gene for another VSG from this antigen repertoire. The data indicate that duplication does not accompany the expression of these VSG genes. Transposition to a specific expression site cannot be excluded, but would have to involve either a much larger segment of DNA, or movement to a region of much greater homology with the previous flanking sequences, than is observed for VSG genes that are duplicated when expressed. It is reasoned that the control of expression by coupled duplication and transposition is not sufficient to account for the selection of a single VSG gene for expression.  相似文献   

20.
Comparative analyses were made to define the immunogenic role in mice of the variant surface coat glycoprotein (VSG) of African trypanosomes. Less than 10 micrograms of the glycoprotein fixed to trypanosomes or covalently linked to sheep erythrocytes were 100 times more immunogenic than soluble VSG. Therefore, although VSG is present on the parasites and in the blood of infected hosts, the cell-bound form most likely elicits immunity. Intravenous administration of soluble or cell-bound VSG was a better route of immunization than the subcutaneous route. Therefore, although parasites grow at the site of infection, in tissue spaces, and in the blood, control of blood parasitemia is best developed if the antigen is introduced to the vascular bed. Full protection against homologous challenge occurred by 4 days and was maintained through 30 days. Trypanosome-agglutinating antibody titers could be measured at 3 days, peaked at 5 days, and remained high through 14 days after immunization. Therefore, mice immunized with an optimal dosage of VSG, 2 days before challenge, should have had ample time to elicit a protective response. Most of these mice, however, developed patent infections, and one-third died during the first peak of parasitemia at about the same time as untreated control mice. This indicates that active infection inhibits the early phases of induction of immunity. Mice, suboptimally immunized against and challenged with an avirulent isolate of Trypanosoma brucei gambiense, survived at higher rates than mice immunized and challenged with a virulent clone of T. b. rhodesiense. Cell-fixed and soluble VSG from both parasites elicited similar agglutinating-antibody titers, indicating that the two trypanosomes were equally antigenic. Results from neutralization tests, however, revealed that, per unit of immune mouse serum, 400 times more T. b. gambiense became noninfective than T. b. rhodesiense. Apparently, virulence is related to relative sensitivity of the trypanosomes to immunological assault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号