首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Fluorescence microphotolysis (recovery after photobleaching) was used to determine the lateral mobility of the (Na+,K+)ATPase and a fluorescent lipid analogue in the plasma membrane of Madin-Darby canine kidney (MDCK) cells at different stages of development. Fluorescein-conjugated Fab' fragments prepared from rabbit anti-dog (Na+,K+)ATPase antibodies (IgG) and 5-(N-hexadecanoyl)aminofluorescein (HEDAF) were used to label the plasma membrane of confluent and subconfluent cultures of MDCK cells. Fractional fluorescence recovery was 50% and 80-90% for the protein and lipid probes, respectively, and was independent of developmental stage. The estimated diffusion constants of the mobile fraction were approximately 5 X 10(-10) cm2/s for the (Na+,K+)ATPase and approximately 2 X 10(-9) cm2/s for HEDAF. Only HEDAF diffusion showed dependency on developmental stage in that D for confluent cells was approximately twice that for subconfluent cells. These results indicate that (Na+,K+)ATPase is 50% immobilized in all developmental stages, whereas lipids in confluent MDCK cells are more mobile than in subconfluent cells. They suggest, furthermore, that the degree of immobilization of the (Na+,K+)ATPase is insufficient to explain its polar distribution, and they support restricted mobility of the ATPase through the tight junctions as the likely mechanism for preventing the diffusion of this protein into the apical domain of the plasma membrane in confluent cell cultures.  相似文献   

2.
The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.  相似文献   

3.
As with other epithelia, the question arises of whether the endothelial cell junctions participate in cell polarization, restrict the localization of lipid molecules, and lead to differences in their lateral motion between the apical and basolateral plasma membranes. We found that in bovine aortic endothelium in culture, the localization of the lipophilic probe 5N-(hexadecanoyl)-aminofluorescein (HEDAF) was markedly affected by the presence of cell junctions. At confluence, the probe was observed to be restricted to the exoplasmic leaflet of the apical plasmalemma. It was detected in the basal membrane only after disruption of the cell junctions, whereas the cells remained firmly bound to the underlying extracellular matrix. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the endothelial confluent cell monolayer forms a mosaic of closed diffusion areas in which the probe molecules are free to diffuse. For the first time, and using a new mathematical approach, it was possible to estimate the diameter of these diffusion areas. Values in the range 14-33 microns were found which correlate well with the actual measured diameters of 14 to 26 microns for the apical pole of individual cells. Moreover, cell junctions were found to affect the dynamics of the probe. When the cell junctions were disrupted, the lateral diffusion coefficient D of HEDAF was found to be the same in both apical and basal membranes. It regained its initial higher value in the apical poles when cell contacts were restored. This strongly suggests that in vascular endothelium, cell junctions affect overall plasma membrane organization in a reversible manner.  相似文献   

4.
Vascular endothelial cells cultured in the presence of fibroblast growth factor (FGF) devide actively when seeded at low or clonal cell densities and upon reachin confluence adopt a morphologic appearance and differentiated properties similar to those of the vascular endothelium in vovi. In this review, we present some of our recent observations regarding the characteristics (both structural and functional) of these endothelial cells and the role of FGF in controlling their proliferation and normal differentation. At confluence the endothelial cells from a monolayer of closely apposed and nondividing cell that have a nonthrombogenic apical surface and can no longer internalize bound ligands such as low-density lipoprotein (LDL). The adoption of these properties is correlated and possibly causally related to changes in the cell surface such as the appearance of a 60,000 molecular weight protein (CSP-60); the disappearance of fibronectin from the apical cell surface and its concomitant accumulation in the basal lamina; and a restriction of the lateral mobility of various cell surface receptor sites. In contrast, endothelial cells that are maintained in the absence of FGF undergo within three passages alterations that are incompatible with their in vivo morphologic apperarance and physiologic beharior. They grow at confluence on top of each other and hence can no longer adopt both the structural (CSP-60, cell surface polarity) and functional (barrier function, nonthrombogenicity) attributes of differentiated endothelial cell. Since these characteristics can be reacquired in response to readdition of FGF, in addition to being a mitogen FGF may also be involved in controlling the differentitation and phenotypic expression of the vascular endothelium.  相似文献   

5.
We have studied the effect of maturation to small intestinal-like epithelial cells of the human colonic carcinoma cell line HT29 on the lateral mobility of different representative membrane components (lipid, proteins), as assessed with fluorescence recovery after photobleaching (FRAP). Maturation was induced in vitro in the HT29 cells by replacing glucose (Glu) with galactose (Gal) in the growth medium (DMEM) during a 21-day period. Scanning electron microscopy revealed an increased number of microvilli in the apical cell membrane, and enzyme analyses (alkaline phosphatase, aminopeptidase) in combination with aqueous countercurrent distribution, indicated that maturation was induced with DMEM-Gal. In comparison to control cells grown in DMEM-Glu medium, the more small intestinal-like cells grown in DMEM-Gal displayed no alteration of the lateral mobility of either cholera toxin (B subunit)-labelled ganglioside GM1 (diffusion coefficient, D [x 10(8)] = 0.8-0.9 cm2s-1; mobile fraction, R = 50-60%) or antibody-stained Class 2 histocompatibility (HLA-DR) antigen (D [x 10(9)] = 2 cm2s-1; R = 60-70%). However, antibody-labelled beta 2-microglobulin of HLA Class 1 antigen displayed increased mobility in HT29-Gal cells; D was x 1.4 and R x 1.8 larger in the HT29-Gal cells. By contrast, the mobility of a neoplastic antigen was reduced; D and R were x0.60 and x0.69 of the values seen in HT29-Glu cells. It is thus concluded that DMEM-Gal-induced differentiation in confluent HT29 cells is accompanied by specific rather than general effects on the lateral mobility of different membrane components.  相似文献   

6.
In this study we have examined possible differentiation-dependent modulations in plasma membrane lipid properties in normal keratinocytes, SV-40 transformed keratinocytes (SVK14) and a number of squamous carcinoma (SCC) cells. In normal keratinocytes the lateral diffusion coefficient of plasma membrane lipids (D) differs significantly for cells cultured permanently under low and normal Ca2+-conditions (5.16 x 10(-9) and 3.27 x 10(-9) cm2/s, respectively). When differentiation is induced by exposing low Ca2+-cultured cells to normal Ca2+ concentrations D increases to 7.07 x 10(-9) cm2/s during the initial hours of differentiation followed by a gradual sustained decrease to values also observed in cells cultured permanently under normal Ca2+-conditions. In SCC and SVK14 cells a similar initial transient increase in lateral lipid mobility is observed upon initiation of differentiation, but, in contrast to normal keratinocytes, no sustained decrease in D is seen upon prolonged culturing under normal Ca2+ conditions. The results indicate that the deficiency of the transformed cells to respond to Ca2+-induced differentiation might involve transformation-dependent alterations in membrane structure and function.  相似文献   

7.
The agonist-induced dynamic regulation of the beta(2)-adrenergic receptor (beta(2)-AR) on living cells was examined by means of fluorescence correlation spectroscopy (FCS) using a fluorescence-labeled arterenol derivative (Alexa-NA) in hippocampal neurons and in alveolar epithelial type II cell line A549. Alexa-NA specifically bound to the beta(2)-AR of neurons with a K(D) value of 1.29 +/- 0.31 nM and of A549 cells with a K(D) of 5.98 +/- 1.62 nM. The receptor density equaled 4.5 +/- 0.9 microm(-2) in neurons (rho(N)) and 19.9 +/- 2.0 microm(-2) in A549 cells (rho(A549)). Kinetic experiments revealed comparable on-rate constants in both cell types (k(on) = 0.49 +/- 0.03 s(-1) nM(-1) in neurons and k(on) = 0.12 +/- 0.02 s(-1) nM(-1) in A549 cells). In addition to the free ligand diffusing with a D(free) of (2.11 +/- 0.04) x 10(-6) cm(2)/s, in both cell types receptor-ligand complexes with two distinct diffusion coefficients, D(bound1) (fast lateral mobility) and D(bound2) (hindered mobility), were observed [D(bound1) = (5.23 +/- 0.64) x 10(-8) cm(2)/s and D(bound2) = (6.05 +/- 0.23) x 10(-10) cm(2)/s for neurons, and D(bound1) = (2.88 +/- 1.72) x 10(-8) cm(2)/s and D(bound2) = (1.01 +/- 0.46) x 10(-9) cm(2)/s for A549 cells]. Fast lateral mobility of the receptor-ligand complex was detected immediately after addition of the ligand, whereas hindered mobility (D(bound2)) was observed after a delay of 5 min in neurons (up to 38% of total binding) and of 15-20 min in A549 cells (up to 40% of total binding). Thus, the receptor-ligand complexes with low mobility were formed during receptor regulation. Consistently, stimulation of receptor internalization using the adenylate cyclase activator forskolin shifted the ratio of receptor-ligand complexes toward D(bound2). Intracellular FCS measurements and immunocytochemical studies confirmed the appearance of endocytosed receptor-ligand complexes in the cytoplasm subjacent to the plasma membrane after stimulation with the agonist terbutaline (1 microM). This regulatory receptor internalization was blocked after preincubation with propranolol and with a cholesterol-complexing saponin alpha-hederin.  相似文献   

8.
The guinea pig sperm protein fertilin functions in sperm-egg plasma membrane binding. Fertilin is initially present in the plasma membrane of the whole head in testicular sperm, then becomes concentrated into the posterior head domain during epididymal passage. Fertilin remains localized to the posterior head plasma membrane following the acrosome reaction, when it functions in sperm-egg interaction. Fluorescence redistribution after photobleaching was used to examine the lateral mobility of fertilin in both acrosome-intact and acrosome-reacted sperm. Fertilin exhibited highly restricted lateral mobility in both testicular and epididymal sperm (D < 10(-10) cm(2)/s). However, fertilin in acrosome-reacted sperm was highly mobile within the membrane bilayer (D = 1.8 x 10(-9) cm(2)/s and %R = 84). Measurement of the lateral mobility of fertilin in capacitated, acrosome-intact sperm revealed two populations of cells. In approximately one-half of the cells, lateral mobility of fertilin was similar to sperm freshly isolated from the cauda epididymis; while in the other half fertilin was highly mobile. The release of fertilin from interactions that restrict its lateral mobility may regulate its function in sperm-egg interaction.  相似文献   

9.
The regulation of the membrane mobility of glycoconjugates in human polymorphonuclear leukocytes (PMNL) was studied by comparing adult PMNL with promyelocytic HL60 cells before and after stimulation of differentiation in HL60 cells with phorbol-myristate acetate (PMA) with respect to lateral diffusion of wheat germ agglutinin (WGA)-labeled glycoconjugates. For this purpose we developed a novel variant of microscope equipment for the study of fluorescence recovery after photobleaching (FRAP) and continuous fluorescence microphotolysis (CFM) using a mini-computer for handling of shutters, data acquisition, and calculations. This equipment is presented in the report. We found that PMA-induced differentiation in HL60 cells reduced the lateral diffusion coefficient (D) of WGA-labeled membrane entities from about 1.5 to 1.0 x 10(-10) cm2/s, which was close to that found for adult blood PMNL, i.e., 1-1.2 x 10(-10) cm2/s. The lateral mobility (D x 10(10)) of succinylated WGA (S-WGA) was 2.3 and 1.7 cm2/s in undifferentiated and PMA-differentiated HL60 cells, respectively, indicating that WGA might have cross-linked membrane receptors, resulting in the slower diffusion. The results are discussed in relation to the effect of phagocyte maturation on the mobility of membrane components.  相似文献   

10.
《The Journal of cell biology》1988,107(6):2363-2376
We have studied the role of restrictions to lateral mobility in the segregation of proteins to apical and basolateral domains of MDCK epithelial cells. Radioimmunoassay and semiquantitative video analysis of immunofluorescence on frozen sections showed that one apical and three basolateral glycoproteins, defined by monoclonal antibodies and binding of beta-2-microglobulin, were incompletely extracted with 0.5% Triton X-100 in a buffer that preserves the cortical cytoskeleton (Fey, E. G., K. M. Wan, and S. Penman. 1984. J. Cell Biol. 98:1973-1984; Nelson, W. T. and P. J. Veshnock. 1986. J. Cell Biol. 103:1751-1766). The marker proteins were preferentially extracted from the "incorrect" domain (i.e., the apical domain for a basolateral marker), indicating that the cytoskeletal anchoring was most effective on the "correct" domain. The two basolateral markers were unpolarized and almost completely extractable in cells prevented from establishing cell-cell contacts by incubation in low Ca++ medium, while an apical marker was only extracted from the basal surface under the same conditions. Procedures were developed to apply fluorescent probes to either the apical or the basolateral surface of live cells grown on native collagen gels. Fluorescence recovery after photobleaching of predominantly basolateral antigens showed a large percent of cells (28- 52%) with no recoverable fluorescence on the basal domain but normal fluorescence recovery on the apical surface of most cells (92-100%). Diffusion coefficients in cells with normal fluorescence recovery were in the order of 1.1 x 10(-9) cm2/s in the apical domain and 0.6-0.9 x 10(-9) cm2/s in the basal surface, but the difference was not significant. The data from both techniques indicate (a) the existence of mobile and immobile protein fractions in both plasma membrane domains, and (b) that linkage to a domain specific submembrane cytoskeleton plays an important role in the maintenance of epithelial cell surface polarity.  相似文献   

11.
Fluorescence redistribution after photobleaching (FRAP) was utilized to select a "fast" lateral mobility clone from Kirsten murine sarcoma virus-transformed 3T3 (KMSV-3T3) fibroblasts. The clone, E7G1, demonstrated a lateral mobility for membrane wheat germ agglutinin (WGA) and succinylated concanavalin A (sCon A) receptors of (2.1 +/- 1.6) X 10(-9) cm2/s and (2.7 +/- 2.3) X 10(-9) cm2/s, respectively. These mobilities were approximately equivalent to phospholipid mobility (2.8 +/- 1.9 X 10(-9) cm2/s). The fast mobility phenotype is observed when the cells are unattached and spherical. Upon attachment, the mobility decreases to (0.19 +/- 0.19) X 10(-9) cm2/s. In addition, the ability of Con A to initiate global modulation was completely lost in spread as well as spherical cells in the E7G1 fast mobility clone. A comparison of F-actin patterns between untransformed Balb/c fibroblasts and the E7G1-transformed line suggests a correlation between well-developed stress fiber assemblies and the ability to induce global modulation. The fast mobility clone was stable for at least 23 passages.  相似文献   

12.
Vascular endothelial surface-related activities may depend on the lateral mobility of specific cell surface macromolecules. Previous studies have shown that cytokines induce changes in the morphology and surface antigen composition of vascular endothelial cells in vitro and at sites of immune and inflammatory reactions in vivo. The effects of cytokines on membrane dynamic properties have not been examined. In the present study, we have used fluorescence photobleaching recovery (FPR) to quantify the effects of the cytokines tumor necrosis factor (TNF) and immune interferon (IFN-gamma) on the lateral mobilities of class I major histocompatibility complex protein, of an abundant 96,000 Mr mesenchymal cell surface glycoprotein (gp96), and of a phospholipid probe in cultured human endothelial cell (HEC) membranes. Class I protein and gp96 were directly labeled with fluorescein-conjugated monoclonal antibodies; plasma membrane lipid mobility was examined with the phospholipid analogue fluorescein phosphatidylethanolamine (Fl-PE). In untreated, confluent HEC monolayers, diffusion coefficients were 30 x 10(-10) cm2 s-1 for class I protein, 14 x 10(-10) cm2 s-1 for gp96, and 80 x 10(-10) cm2 s-1 for Fl-PE. Fractional mobilities were greater than 80% for each probe. Cultures treated at visual confluence for 3-4 d with either 100 U/ml TNF or 200 U/ml IFN-gamma did not exhibit significant changes in protein or lipid mobilities despite significant changes in cell morphology and membrane antigen composition. In HEC cultures treated concomitantly with TNF and IFN-gamma, however, diffusion coefficients decreased by 71-79% for class I protein, 29-55% for gp96, and 23-38% for Fl-PE. Fractional mobilities were unchanged. By immunoperoxidase transmission electron microscopy, plasma membranes of untreated and cytokine-treated HEC were flat and stained uniformly for class I antigen. "Line" FPR measurements on doubly treated HEC demonstrated isotropic diffusion of class I protein, gp96, and Fl-PE. Finally, although TNF and IFN-gamma retarded the growth of HEC cultures and disrupted the organization of cell monolayers, the slow diffusion rates of gp96 and Fl-PE in confluent doubly treated monolayers were not reproduced in sparse or subconfluent untreated monolayers. We conclude that the slowing of protein and lipid diffusion induced by the combination of TNF and IFN-gamma is not due to plasma membrane corrugations, to anisotropic diffusion barriers, or to decreased numbers of cell-cell contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
We compared the properties in human melanoma cell line A875 and rat pheochromocytoma cell line PC12 of nerve growth factor receptor (NGFr). We also analyzed NGFr and a truncated NGFR lacking the cytoplasmic domain, which were transiently expressed in COS cells. The full-length NGFR expressed in COS cells bound nerve growth factor (NGF) with positive cooperativity, but A875 NGFr and truncated NGFr in COS cells did not display positive cooperativity. The anti-human NGFr monoclonal antibody NGFR5 was characterized and found not to compete with NGF for binding to NGFr. Fabs were prepared from NGFR5 and 192, an anti-rat NGFR monoclonal antibody that was previously shown not to compete with NGF for binding. Fluorescein-labeled Fabs were used to measure the distribution and lateral diffusion of the NGFr. NGFr expressed on COS and A875 cells are diffusely distributed, but NGFr on the surface of PC12 cells appeared, for some cells, to be patched. In A875 cells, 51% of the NGFr was free to diffuse with diffusion coefficient (D) approximately 7 X 10(-10) cm2/s. In COS cells, 43% diffused with D approximately 5 X 10(-10) cm2/s. There was no significant difference in diffusibility between the full-length NGFr and the truncated NGFr. We compared NGFr diffusion on PC12 cells in suspension or adherent to collagen-coated coverslips. For suspension cells, we obtained 32% recovery with D approximately 2.5 X 10(-9) cm2/s. On adherent cells, we obtained 17% recovery with 6 X 10(-9) cm2/s. Binding of NGF enhanced lateral diffusion of NGFr in A875 cells and in PC12 cells in suspension but did not alter lateral diffusion of NGFr in COS cells or in adherent PC12 cells. NGF had no effect on the diffusing fraction or the distribution of NGFR for any cell line.  相似文献   

14.
We have applied a multiple isotope dilution technique to examine junctional permeability of human umbilical vein endothelial cells (HUVEC) in vitro. Primary cultures were grown to confluence on porous Cytodex-3 microcarrier beads, packed into 0.3 ml columns (3 x 10(6) cells) and perfused at varying flow rates (0.3-1.2 ml/min) with HEPES-buffered Tyrodes solution containing unlabeled cyanocobalamin, insulin, and albumin. Columns were challenged periodically with mixtures of radioactive tracers of different molecular size. Permeability to 22Na+, [57Co]cyanocobalamin (1.3 kD), [125I]insulin (6 kD) or [125I]albumin (66 kD) was assessed relative to [131I]IgG (160 kD, impermeant reference tracer) by comparing column elution profiles. Although the single passage extraction of [125I]albumin by beads alone approximated 40%, the presence of confluent HUVEC rendered these beads effectively impermeable to albumin. High junctional extractions were measured for cyanocobalamin (0.79 +/- 0.02, n = 28) and insulin (0.51 +/- 0.05, n = 14) in cultures perfused at 0.3-0.4 ml/min, and tracer extraction decreased as perfusion rates increased. Permeability coefficients for cyanocobalamin (9.66 x 10(-5) cm/s) and insulin (4.18 x 10(-5) cm/s) increased significantly during perfusion with thrombin (10 U/ml) or cytochalasin D (1 microgram/ml), whereas permeability to albumin (0.39 x 10(-5) cm/s) remained unchanged. Morphological studies, using the glycocalyx stain ruthenium red, revealed that thrombin or cytochalasin D increased the penetration of the stain into junctions between endothelial cells.  相似文献   

15.
D A Jans  R Peters    F Fahrenholz 《The EMBO journal》1990,9(9):2693-2699
The present work examines lateral mobility of the vasopressin V1-type receptor, representing the first determination of lateral mobility of a hormone receptor coupled to phospholipase C activation. The V1-receptor of A7r5 smooth muscle cells was characterized for [Arg8] vasopressin (AVP) binding properties and affinity for the fluorescent vasopressin analogue 1-deamino[8-lysine (N6-tetramethylrhodamylaminothiocarbonyl)] vasopressin (TR-LVP). TR-LVP was biologically active in A7r5 cells, inducing inositol 1,4,5-trisphosphate turnover in similar fashion to AVP. TR-LVP was used to specifically label the V1-receptor of living A7r5 cells, and lateral mobility of the V1-receptor was measured using the technique of fluorescence microphotolysis. The apparent lateral diffusion coefficient (D) at 37 degrees C was 5.1 x 10(-10) cm2/s, falling to 2.9 x 10(-10) cm2/s at 13 degrees C. These D values are higher than comparable values for the adenylate cyclase-activating vasopressin V2-receptor of LLC-PK1 renal epithelial cells analysed with the same fluorescent ligand. In contrast to the V2-receptor, no marked temperature dependence was observed for the V1-receptor mobile fraction (f). From 37 degrees C to 13 degrees C, f was relatively low (between 0.4 and 0.5) consistent with V1-receptor immobilization through internalization, which is rapid even at room temperature in A7r5 cells. These differences between V1- and V2-receptor lateral mobility are discussed in terms of the implications for their respective signal transduction systems.  相似文献   

16.
Lipopolysaccharide labeled with fluorescein isothiocyanate (FITC-LPS) was used to examine interactions between endotoxin and plasma membrane in isolated rat hepatocytes and mouse neuroblastoma NB41A3 cells. At the same endotoxin to cell ratio, hepatocytes bound more toxin than did neuroblastoma cells. At a dose of 12 micrograms/mg dry wt, a bound mobile fraction of between 60 and 75% of FITC-LPS was found on hepatocytes at 25 degrees C with a lateral diffusion coefficient (D) of 4.0 X 10(-9) cm2/s. In neuroblastoma cells, the mobile fraction was larger (85-90%), with D 1.0 X 10(-8) cm2/s. D was temperature-dependent between 10 and 37 degrees C and increased from 1.8 X 10(-9) to 1.0 X 10(-8) cm2/s in hepatocytes and from 9.4 X 10(-9) to 1.9 X 10(-8) cm2/s in neuroblastoma cells. In both types of cell, nonviable (cells which did not exclude Trypan blue) as compared to viable cells showed different recovery patterns and 100% of the probe molecules were mobile. These results suggest that: (1) endotoxin binding to mammalian cells consists of two subpopulations with different mobilities; (2) binding of the immobile fraction is dependent on cellular integrity; and (3) the differences in binding, lateral mobility, and size of the immobile fraction in hepatocytes and neuroblastoma cells may be due to variations in membrane composition and/or number of binding sites.  相似文献   

17.
The surface charge density of endothelial cells was estimated from cell electrophoresis. Cultured endothelial cells from the bovine pulmonary artery were suspended in saline and placed in the lumen of a glass capillary. A voltage was applied across the capillary ends and the velocity imparted to the cells was measured with a microscope. Erythrocyte mobility was also measured. The mobility in (micron/s)/(V/cm) was 0.74 +/- 0.08 for endothelial cells and 1.03 +/- 0.15 for erythrocytes. Charge density in esu/cm2 was calculated as 2.62 x 10(4) and 0.91 x 10(4) for endothelial and red cells, respectively. Removal of sialic acid did not affect the mobility of endothelial cells, but it reduced that of red cells to near zero. Endothelial cell mobility decreased either with ionic strength or calcium concentration. Our results strongly suggest that the surface charge of endothelial cells is dependent on sulfated glycosaminoglycans.  相似文献   

18.
We have observed secretory granules beneath the plasma membrane of chromaffin cells. Using evanescent-field excitation by epiillumination, we have illuminated a thin layer of cytosol where cells adhere to glass coverslips. Up to 600 frames could be recorded at diffraction-limited resolution without appreciable photodynamic damage. We localized single granules with an uncertainty of approximately 30 nm and tracked their motion in three dimensions. Granules in resting cells wander randomly as if imprisoned in a cage that leaves approximately 70 nm space around a granule. The "cage" itself moves only slowly (D = 2 x 10(-12) cm2/s). Rarely do granules arrive at or depart from the plasma membrane of resting cells. Stimulation increases lateral motion only slightly. After the plasma membrane has been depleted of granules by exocytosis, fresh granules can be seen to approach it at an angle. The method will be useful for exploring the molecular steps preceding exocytosis at the level of single granules.  相似文献   

19.
The angiogenic factor, basic fibroblast growth factor (FGF), either stimulates endothelial cell growth or promotes capillary differentiation depending upon the microenvironment in which it acts. Analysis of various in vitro models of spontaneous angiogenesis, in combination with time-lapse cinematography, demonstrated that capillary tube formation was greatly facilitated by promoting multicellular retraction and cell elevation above the surface of the rigid culture dish or by culturing endothelial cells on malleable extracellular matrix (ECM) substrata. These observations suggested to us that mechanical (i.e., tension-dependent) interactions between endothelial cells and ECM may serve to regulate capillary development. To test this hypothesis, FGF-stimulated endothelial cells were grown in chemically defined medium on bacteriological (nonadhesive) dishes that were precoated with different densities of fibronectin. Extensive cell spreading and growth were promoted by fibronectin coating densities that were highly adhesive (greater than 500 ng/cm2), whereas cell rounding, detachment, and loss of viability were observed on dishes coated with low fibronectin concentrations (less than 100 ng/cm2). Intermediate fibronectin coating densities (100-500 ng/cm2) promoted cell extension, but they could not completely resist cell tractional forces. Partial retraction of multicellular aggregates resulted in cell shortening, cessation of growth, and formation of branching tubular networks within 24-48 h. Multicellular retraction and subsequent tube formation also could be elicited on highly adhesive dishes by overcoming the mechanical resistance of the substratum using higher cell plating numbers. Dishes coated with varying concentrations of type IV collagen or gelatin produced similar results. These results suggest that ECM components may act locally to regulate the growth and pattern-regulating actions of soluble FGF based upon their ability to resist cell-generated mechanical loads. Thus, we propose that FGF-stimulated endothelial cells may be "switched" between growth, differentiation, and involution modes during angiogenesis by altering the adhesivity or mechanical integrity of their ECM.  相似文献   

20.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel expressed at the apical plasma membrane. It has been proposed that the C-terminal PDZ binding motif of CFTR is required for its apical membrane targeting and that PDZ-domain interactions may tether CFTR to the actin cytoskeleton via soluble proteins including EBP50/NHERF1 and ezrin. We measured the diffusional mobility of human CFTR in the plasma membrane of Madin-Darby canine kidney cells by photobleaching of green fluorescent protein (GFP)-CFTR chimeras. After bleaching by a focused laser beam, GFP-CFTR fluorescence in the bleached membrane region recovered to approximately 90% of its initial level, indicating that nearly all of the CFTR was mobile. The GFP-CFTR diffusion coefficient (D) was 0.99 +/- 0.09 x 10(-10) cm2/s at 37 degrees C, similar to that of other membrane proteins. GFP-CFTR diffusion was not altered by protein kinase A or C activators but was blocked by paraformaldehyde and filipin. CFTR mutants lacking functional PDZ-binding domains (GFPCFTR-DeltaTRL and GFP-CFTR-DeltaTRA) were also mobile with D significantly increased by approximately 60% compared with GFP-CFTR. However, GFP-CFTR, GFP-CFTR-Delta TRL, and GFP-CFTR-DeltaTRA had similar mobilities (D approximately 12 x 10(-10) cm2/s) at the endoplasmic reticulum in brefeldin A-treated cells. Agents that modulate the actin cytoskeleton (cytochalasin D and jasplakinolide) altered the plasma membrane mobility of CFTR but not CFTR- DeltaTRL. EBP50 (NHERF1), a PDZ domain-containing protein that interacts with the C terminus of CFTR, diffused freely in the cytoplasm with a diffusion coefficient of 0.9 +/- 0.1 x 10(-7) cm2/s. EBP50 diffusion increased by approximately 2-fold after deletion of its ezrin-binding domain. These results indicate that wild-type CFTR is not tethered statically at the plasma membrane but that its diffusion is dependent on PDZ-domain interactions and an intact actin skeleton. PDZ-domain interactions of CFTR are thus dynamic and occur on a time scale of seconds or faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号