首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The polymerase chain reaction (PCR) is the most widely used technique for the study of DNA. Applications for PCR have been extended significantly by the development of "long" PCR, a technique that makes it possible to amplify DNA fragments up to 40 kb in length. This article describes two novel applications of the long PCR technique, one which simplifies restriction mapping and another which enhances amplification specificity and yield. The same primers used to perform the long PCR amplification can be used as probes to perform restriction mapping of the DNA fragment amplified. Restriction digestion performed prior to long PCR amplification can be used to selectively suppress the amplification of members of families of closely related DNA sequences, thereby making it possible to selectively amplify one of a group of highly homologous sequences. These two complimentary techniques, both involving use of the long PCR paired with restriction digestion, have potential application in any laboratory in which PCR is performed.  相似文献   

2.
A novel method for generating plant DNA markers was developed based on data mining for short conserved amino acid sequences in proteins and designing polymerase chain reaction (PCR) primers based on the corresponding DNA sequence. This method uses single 15- to 19-mer primers for PCR and an annealing temperature of 50°C. PCR amplicons are resolved using standard agarose gel electrophoresis. Using a reference set of rice genotypes, reproducible polymorphisms were generated. Since primers were designed using highly conserved regions of genes, markers should be generated in other plant species. We propose that this method could be used in conjunction with or as a substitute to other technically simple dominant marker methods for applications such as targeted quantitative trait loci mapping, especially in laboratories with a preference for agarose gel electrophoresis.  相似文献   

3.
T Kohda  K Taira 《DNA research》2000,7(2):151-155
We present an improvement of the inverse PCR method for the determination of end sequences of restriction fragments containing unknown DNA sequences flanked by known segments. In this approach, a short "bridge" DNA is inserted during the self-ligation step of the inverse PCR technique. This bridge DNA acts as primer annealing sites for amplification and subsequent direct sequencing. Successive PCR amplifications enable selective amplification of the unknown sequences from a complex mixture. Unlike previously described methods, our method does not require special materials, such as synthetic adapters or biotinylated primers that must be prepared each time to adapt the target. Furthermore, no complex steps such as dephosphorylation or purification are needed. Our method can save time and reduce the cost of cloning unknown sequences; it is ideal for routine, rapid gene walking. We applied this method to a GC-rich bacterial genome and succeeded in determining the end sequences of a 4.5-kb fragment.  相似文献   

4.
We present dial-out PCR, a highly parallel method for retrieving accurate DNA molecules for gene synthesis. A complex library of DNA molecules is modified with unique flanking tags before massively parallel sequencing. Tag-directed primers then enable the retrieval of molecules with desired sequences by PCR. Dial-out PCR enables multiplex in vitro clone screening and is a compelling alternative to in vivo cloning and Sanger sequencing for accurate gene synthesis.  相似文献   

5.
用基因组DNA剪接技术克隆SIgA相关基因   总被引:1,自引:0,他引:1  
目的:克隆分泌型IgA(SIgA)相关基因--J链基因(IgJ)、多聚免疫球蛋白受体基因(pIgR)和IgA重链恒定区基因(IGHA),为进一步构建SIgA真核表达质粒奠定基础。方法:采用本室建立的"基因组DNA剪接"技术,根据已发表的IgJ、pIgR和IGHA的核苷酸序列,通过计算机软件分别设计各个基因片段外显子的优化引物,从人外周血基因组DNA中直接扩增各基因的外显子序列;然后人工设计融合相邻外显子的融合引物,采用重叠PCR技术,把各基因片段的外显子串联起来形成全长编码序列,完成基因组DNA的体外剪接。扩增的PCR产物纯化后克隆到pGEM-T Easy Vector中,通过DNA测序对阳性克隆进行分析鉴定。结果:PCR扩增的IgJ、pIgR和IGHA基因与预期大小一致;测序结果表明本实验获得的上述基因与GenBank中的目标基因序列完全一致。结论:本文通过基因组DNA剪接技术成功克隆人类SIgA三个相关基因,提示此技术是合成多外显子cDNA的有效手段。  相似文献   

6.
The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.  相似文献   

7.
The chased polymerase chain reaction (PCR) technique described here is a convenient method enabling the characterization of flanking regions of a known A/T-rich DNA fragment in two different successive steps. The first step includes a modified inverse PCR with inverted tail-to-tail primers, each with 35 overhanging nucleotides for the insertion into a carrier plasmid. The second step consists of a technique similar to a site-directed mutagenesis. The chased PCR technique is simple, quick, versatile and efficient; it improves the inverse PCR technique and may be applied to any ligation-linker method. Consequently, the techniques for PCR-based gene isolation are more suitable for the isolation of missing sequences of A/T-rich or complex DNA.  相似文献   

8.
Ibrahim A  Hofman-Bang J  Ahring BK 《BioTechniques》2001,30(2):414-6, 418, 420
We present a simplified and fast method to obtain high-quality sequences directly from PCRs without the traditional gel purification. We also report on an improved method to obtain sequence-quality PCR products from microorganisms that are difficult to lyse with no need for DNA extraction. The technique uses exonuclease 1 and shrimp alkaline phosphatase to degrade residual dNTPs and primers. Our technique is shown to work on both Gram-positive and Gram-negative bacteria.  相似文献   

9.
Fu Q  Zhang M  Qin WS  Lu YQ  Zheng HY  Meng B  Lu SS  Lu KH 《Theriogenology》2007,68(9):1211-1218
The polymerase chain reaction (PCR) is an efficient method for sexing embryos. The objective of this study was to develop an accurate and reliable method for sexing swamp buffalo (Bubalus bubalis) embryos. The SRY gene from swamp buffalo genomic DNA was amplified by PCR, using primers based on the sequence of the Holstein SRY gene. This fragment was sequenced based on a BLAST search; the SRY gene was highly conserved. Using a Southern blot, there was a strong signal in genomic DNA only from male swamp buffalo. Two pairs of nested primers, targeted to amplify the swamp buffalo SRY conserved region, were designed for sex identification. Simultaneously, the G3PDH gene was co-amplified to serve as an internal control. A multiplex-nested PCR system was optimized by varying the following individually: concentrations of Mg(2+) and dNTPs, ratio of concentrations of primers and numbers of cycles. Biopsies of 27 IVF-derived embryos and 24 embryos fertilized with Y-chromosome-bearing sperm were examined. Using optimized procedures, clear signals following PCR amplification were obtained from all embryo samples; PCR amplification accuracy was further verified by comparing PCR and dot blots. We concluded that this PCR technique was highly reliable for sexing swamp buffalo embryos.  相似文献   

10.
The heat shock protein 90 (hsp90) gene sequence is known to be highly conserved across the species barrier. A PCR-based method was thus utilised in an attempt to sequence the Candida tropicalis hsp90 gene. Primers for PCR were designed from conserved regions of the gene, which were identified by comparing the Saccharomyces cerevisiae and Candida albicans hsp90 gene sequences. Different sets of primers were designed to amplify and obtain overlapping DNA sequences of the C tropicalis gene. PCR was carried out on genomic DNA of Candidca tropicalis and the PCR products were cloned into suitable vector molecules for sequencing. In this way, a 2,070-basepair sequence of the C. tropicalis hsp90 gene was obtained. The PCR-based approach proved to be an easier method of obtain the sequence of a highly conserved gene, as compared to more conventional methods.  相似文献   

11.
Site-directed mutagenesis is an invaluable tool for functional studies and genetic engineering. However, most current protocols require the target DNA to be cloned into a plasmid vector before mutagenesis can be performed, and none of them are effective for multiple-site mutagenesis. We now describe a method that allows mutagenesis on any DNA template (eg. cDNA, genomic DNA and plasmid DNA), and is highly efficient for multiple-site mutagenesis (up to 100%). The technology takes advantage of the requirement that, in order for DNA polymerases to elongate, it is crucial that the 3′ sequences of the primers match the template perfectly. When two outer mutagenic oligos are incorporated together with the desired mutagenic oligos into the newly synthesised mutant strand, they serve as anchors for PCR primers which have 3′ sequences matching the mutated nucleotides, thus amplifying the mutant strand only. The same principle can also be used for mutant screening.  相似文献   

12.
植物病毒侵染宿主植物的一个重要过程是通过它在宿主体内的转移和传播,产生病害。植物病毒在宿主体内的转移主要有两种方式,一种是通过植物维管组织进行的系统转移,另一种是植物病毒在宿主细胞之间的转移,这种转移是通过植物细胞的胞间连丝实现的。实验表明,病毒自身编码的一种蛋白参与了这个转移过程,对烟草花叶病毒(TMV)而言,这种蛋白就是分子量为30kDa的运动蛋白。  相似文献   

13.
Since the invention of the PCR technology, adaptation techniques to clone DNA fragments flanking the known sequence continue to be developed. We describe a perfectly annealed cassette available in almost unlimited quantities with variable sticky-and blunt-end restriction enzyme recognition sites for efficient restriction and ligation with the restricted target genomic DNA. The cassette provides a 200-bp sequence, which is used to design a variety of cassette-specific primers. The dephosphorylation prevents cassette self-ligation and creates a nick at the cassette: target genome DNA ligation site suppressing unspecific PCR amplifications. We introduce the single-strand amplification PCR (SSA-PCR) technique where a lone known locus-specific primer is firstly used to enrich the targeted template DNA strand resulting in significant PCR product specificity during the second round conventional nested PCR. The distance between the known locus-specific primer and the nearest location of the restriction enzyme used determined the length of the obtained PCR product. We used this technique to walk downstream into the isochorismatase and upstream into the hypothetical conserved genes flanking the mature extracellular lipase gene from Bacillus licheniformis. We further demonstrated the potential of the technique as a cost-effective method during PCR-based prospecting for novel genes by designing "universal" degenerate primers that detected homologues of Family VII bacterial lipolytic genes in Bacillus species. The cassette ligation-mediated PCR was used to clone complete nucleotide sequences encoding functional lipolytic genes from B. licheniformis and Bacillus pumilus.  相似文献   

14.
Primers that contain portions noncomplementary to the target region are usually used to add to the PCR product a utility sequence such as a restriction site or a universal probe binding site. We have demonstrated that primers with short 5'AT-rich overhangs increase real-time PCR fluorescent signal. The improvement is particularly significant for difficult to amplify templates, such as highly variable viral sequences or bisulfite-treated DNA.  相似文献   

15.
A method is described for quickly and reproducibly isolating genomic DNA contiguous with known DNA sequence by means of the polymerase chain reaction (PCR). Flanking genomic DNA is isolated using a biotinylated sequence-specific primer in combination with a generic hybrid primer that binds to a deoxyoligonucleotide sequence artificially added to the ends of the genomic DNA. Amplified sequences that include the biotinylated primer are purified from nonbiotinylated amplification products by binding to a solid-phase streptavidin matrix. The biotinylated amplification product(s) are subjected to a further round of amplification, after which they can be subcloned and analyzed. This technique was applied to the isolation of three intron-exon junctions. Verification of the identify of these junction sequences was accomplished by designing primers based on the intron sequences isolated by Biotin-RAGE, amplifying across the exon using these intron primers, and sequencing the PCR-generated product.  相似文献   

16.
MegaPlex PCR: a strategy for multiplex amplification   总被引:1,自引:0,他引:1  
'MegaPlex PCR' is a robust technology for highly multiplexed amplification of specific DNA sequences. It uses target-specific pairs of PCR primers that are physically separated by surface immobilization. Initial surface-based amplification cycles are then coupled to efficient solution-phase PCR using one common primer pair. We demonstrate this method by co-amplifying and genotyping 75 unselected human single-nucleotide polymorphism (SNP) loci.  相似文献   

17.
The polymerase chain reaction (PCR) is an attractive technique for many genome mapping and characterization projects. One PCR approach which has been evaluated involves the use of randomly amplified polymorphic DNA (RAPD). An alternative to RAPDs is the sequence-tagged-site (STS) approach, whereby PCR primers are designed from mapped low-copy-number sequences. In this study, we sequenced and designed primers from 22 wheat RFLP clones in addition to testing 15 primer sets that had been previously used to amplify DNA sequences in the barley genome. Our results indicated that most of the primers amplified sequences that mapped to the expected chromosomes in wheat. Additionally, 9 of 16 primer sets tested revealed polymorphisms among 20 hexaploid wheat genotypes when PCR products were digested with restriction enzymes. These results suggest that the STS-based PCR analysis will be useful for generation of informative molecular markers in hexaploid wheat.Contribution no. J-2833 of the Montana Agric Exp Stn  相似文献   

18.
The increased use of pure starter cultures in the wine industry has made it necessary to develop a rapid and simple identification system for yeast strains. A method based upon the PCR using oligonucleotide primers that are complementary to intron splice sites has been developed. Since most introns are not essential for gene function, introns have evolved with minimal constraint. By targeting these highly variable sequences, the PCR has proved to be very effective in uncovering polymorphisms in commercial yeast strains. The speed of the method and the ability to analyze many samples in a single day permit the monitoring of specific yeast strains during fermentations. Furthermore, the simplicity of the technique, which does not require the isolation of DNA, makes it accessible to industrial laboratories that have limited molecular expertise and resources.  相似文献   

19.
3' Rapid amplification of cDNA ends (3' RACE) is a polymerase chain reaction (PCR) based technique which has been developed to analyse 3' ends of partially known cDNA sequences. To improve the effectiveness of the technique, many investigators have modified the RACE protocol. Here, we describe an alternative procedure for analysing 3' mRNA ends which is based on DNA ligase-mediated self circularization and inverse PCR. This technique is simple and characterized by the exclusive use of gene-specific primers and the absence of unspecific adaptor sequences to obtain highly specific PCR products. We applied the method to analyze the 3' UTR of human mono-ADP-ribosyltransferase (ART) 3 mRNA in testis and heart muscle and of ART4 mRNA in HEL cells. The obtained sequences of ART3 and ART4 mRNA corresponded to data base entries of the respective mRNAs. No adenylate/uridylate-rich elements (AREs) were found in the 3' UTR of ART3 mRNA while one ARE class I motif was detected in the 3' UTR of ART4 mRNA.  相似文献   

20.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号