首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Erythropoietin production has been reported to occur in the peritubular interstitial fibroblasts in the kidney. Since the erythropoietin production in the nephron is controversial, we reevaluated the erythropoietin production in the kidney. We examined mRNA expressions of erythropoietin and HIF PHD2 using high-sensitive in situ hybridization system (ISH) and protein expression of HIF PHD2 using immunohistochemistry in the kidney. We further investigated the mechanism of erythropoietin production by hypoxia in vitro using human liver hepatocell (HepG2) and rat intercalated cell line (IN-IC cells). ISH in mice showed mRNA expression of erythropoietin in proximal convoluted tubules (PCTs), distal convoluted tubules (DCTs) and cortical collecting ducts (CCDs) but not in the peritubular cells under normal conditions. Hypoxia induced mRNA expression of erythropoietin largely in peritubular cells and slightly in PCTs, DCTs, and CCDs. Double staining with AQP3 or AE1 indicated that erythropoietin mRNA expresses mainly in β-intercalated or non α/non β-intercalated cells of the collecting ducts. Immunohistochemistry in rat showed the expression of HIF PHD2 in the collecting ducts and peritubular cells and its increase by anemia in peritubular cells. In IN-IC cells, hypoxia increased mRNA expression of erythropoietin, erythropoietin concentration in the medium and protein expression of HIF PHD2. These data suggest that erythropoietin is produced by the cortical nephrons mainly in the intercalated cells, but not in the peritubular cells, in normal hematopoietic condition and by mainly peritubular cells in hypoxia, suggesting the different regulation mechanism between the nephrons and peritubular cells.  相似文献   

3.
Excessive physical exercise may lead to disturbance of the entire homeostasis in the body, including damage not only in skeletal muscles but also in many distant organs. The mechanisms responsible for the exercise-induced changes could include oxidative stress or angiotensin II. We previously showed that acute exercise led to apoptosis in kidney but not as a result of oxidative stress. In this study, we examined the role of angiotensin II and its AT1 and AT2 receptors in mediation of exercise-induced apoptosis in kidney. We clearly demonstrated that acute physical exercise induced apoptosis in renal cells of distal convoluted tubuli and cortical and medullary collecting ducts. Moreover, the cells displayed an increased expression of both AT1 and AT2 angiotensin II receptors and of p53 protein. The results suggest that angiotensin II could upregulate p53 expression in renal distal convoluted tubular cells and in the cells collecting ducts via both AT1 and AT2 receptors, which might be the crucial apoptosis-mediating mechanism in kidneys after excessive exercise.  相似文献   

4.
Strategic compartmentalization of Toll-like receptor 4 in the mouse gut   总被引:23,自引:0,他引:23  
Pattern recognition receptors (PRRs), which include the Toll-like receptors (TLRs), are involved in the innate immune response to infection. TLR4 is a model for the TLR family and is the main LPS receptor. We wanted to determine the expression of TLR4 and compare it with that of TLR2 and CD14 along the gastrointestinal mucosa of normal and colitic BALB/c mice. Colitis was induced with 2.5% dextran sodium sulfate (DSS). Mucosa from seven segments of the digestive tract (stomach, small intestine in three parts, and colon in three parts) was isolated by two different methods. Mucosal TLR4, CD14, TLR2, MyD88, and IL-1beta mRNA were semiquantified by Northern blotting. TLR4 protein was determined by Western blotting. TLR4/MD-2 complex and CD14 were evaluated by immunohistochemistry. PRR genes were constitutively expressed and were especially stronger in colon. TLR4 and CD14 mRNA were increased in the distal colon, but TLR2 mRNA was expressed more strongly in the proximal colon, and MyD88 had a uniform expression throughout the gut. Accordingly, TLR4 and CD14 protein levels were higher in the distal colon. TLR4/MD-2 and CD14 were localized at crypt bottom epithelial cells. TLR4/MD2, but not CD14, was found in mucosal mononuclear cells. Finally, DSS-induced inflammation was localized in the distal colon. All genes studied were up-regulated during DSS-induced inflammation, but the normal colon-stressed gut distribution was preserved. Our findings demonstrate that TLR4, CD14, and TLR2 are expressed in a compartmentalized manner in the mouse gut and provide novel information about the in vivo localization of PRRs.  相似文献   

5.
NaHCO(3) transporters are involved in maintenance of intracellular pH and transepithelial HCO(3)(-) movement in many rodent tissues. To establish the human relevance of the many investigations on rodents, this study aimed to map these transporters and a related polypeptide, NaBC1 [solute carrier 4 (SLC4)A11], to several human tissues by using PCR on reverse transcribed human mRNA and immunoperoxidase histochemistry. The mRNA encoding the electroneutral Na(+):HCO(3)(-) cotransporter (NBCe1; SLC4A4), was expressed in renal cortex, renal medulla, stomach, duodenum, jejunum, ileum, colon, pancreas, choroid plexus, cerebellum, cerebrum, and hippocampus. NBCe2 (SLC4A5) and NBCn1 (SLC4A7) mRNAs were mainly found in kidney and brain tissues, as was mRNA encoding the Na(+)-dependent anion exchangers NCBE (SLC4A10) and NDCBE1 (SLC4A8). In addition to previous findings, NBCn1 protein was localized to human renal medullary thick ascending limbs and duodenal epithelial villus cells and NBCe2 protein to renal collecting ducts. Finally, the message encoding NaBC1 was found in kidney, stomach, duodenum, pancreas, and brain, and the corresponding protein in the anterior and posterior corneal epithelia, renal corpuscules, proximal tubules, collecting ducts, pancreatic ducts, and the choroid plexus epithelium. In conclusion, the selected human tissues display distinct expression patterns of HCO(3)(-) transporters, which closely resemble that of rodent tissues.  相似文献   

6.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   

7.
To investigate regional aspects of hypoxic regulation of adrenomedullin (AM) in kidneys, we mapped the distribution of AM in the rat kidney after hypoxia (normobaric hypoxic hypoxia, carbon monoxide, and CoCl(2) for 6 h), anemia (hematocrit lowered by bleeding) and after global transient ischemia for 1 h (unilateral renal artery occlusion and reperfusion for 6 and 24 h) and segmental infarct (6 and 24 h). AM expression and localization was determined in normal human kidneys and in kidneys with arterial stenosis. Hypoxia stimulated AM mRNA expression significantly in rat inner medulla (CO 13 times, 8% O(2) 6 times, and CoCl(2) 8 times), followed by the outer medulla and cortex. AM mRNA level was significantly elevated in response to anemia and occlusion-reperfusion. Immunoreactive AM was associated with the thin limbs of Henle's loop, distal convoluted tubule, collecting ducts, papilla surface epithelium, and urothelium. AM labeling was prominent in the inner medulla after CO and in the outer medulla after occlusion-reperfusion. The infarct border zone was strongly labeled for AM. In cultured inner medullary collecting duct cells, AM mRNA was significantly increased by hypoxia. AM mRNA was equally distributed in human kidney and AM was localized as in the rat kidney. In human kidneys with artery stenosis, AM mRNA was not significantly enhanced compared with controls, but AM immunoreactivity was observed in tubules, vessels, and glomerular cells. In summary, AM expression was increased in the rat kidney in response to hypoxic and ischemic hypoxia in keeping with oxygen gradients. AM was widely distributed in the human kidney with arterial stenosis. AM may play a significant role to counteract hypoxia in the kidney.  相似文献   

8.
Galectin is an animal lectin that has high affinity to β-galactoside of glycoconjugates. In the present study, cellular expression of galectin subtypes in the urinary system of adult mice was examined by in situ hybridization and immunohistochemistry. The major subtype expressed in the murine urinary system was galectin-3, which was expressed continuously from the kidney to the distal end of the urethra. The renal cortex expressed galectin-3 more intensely than the medulla. Renal galectin-3 immunoreactivity was strongest in the cortical collecting ducts, where principal cells were the sole cellular source. All cell layers of the transitional epithelium from the renal pelvis to the urethra strongly expressed galectin-3 at the mRNA and protein levels. An electron microscopic study demonstrated diffuse cytoplasmic localization of galectin-3 in principal cells of the collecting ducts and in the bladder epithelial cells. Urethral galectin-3 expression at the pars spongiosa decreased in intensity near the external urethral orifice, where the predominant subtype of galectin was substituted by galectin-7. The muscular layer of the ureter and urinary bladder contained significant signals for galectin-1. Taken together, the observations indicate that the adult urinary system shows intense and selective expression of galectin-3 in epithelia of the uretic bud- and cloaca-derivatives.  相似文献   

9.
Expression of somatostatin receptors 1 and 2 in the adult mouse kidney   总被引:6,自引:0,他引:6  
  相似文献   

10.
The kidney has an intrinsic ability to repair itself when injured. Epithelial cells of distal tubules may participate in regeneration. Stem cell marker, TRA-1-60 is linked to pluripotency in human embryonic stem cells and is lost upon differentiation. TRA-1-60 expression was mapped and quantified in serial sections of human foetal, adult and diseased kidneys. In 8- to 10-week human foetal kidney, the epitope was abundantly expressed on ureteric bud and structures derived therefrom including collecting duct epithelium. In adult kidney inner medulla/papilla, comparisons with reactivity to epithelial membrane antigen, aquaporin-2 and Tamm–Horsfall protein, confirmed extensive expression of TRA-1-60 in cells lining collecting ducts and thin limb of the loop of Henle, which may be significant since the papillae were proposed to harbour slow cycling cells involved in kidney homeostasis and repair. In the outer medulla and cortex there was rare, sporadic expression in tubular cells of the collecting ducts and nephron, with positive cells confined to the thin limb and thick ascending limb and distal convoluted tubules. Remarkably, in cortex displaying tubulo-interstitial injury, there was a dramatic increase in number of TRA-1-60 expressing individual cells and in small groups of cells in distal tubules. Dual staining showed that TRA-1-60 positive cells co-expressed Pax-2 and Ki-67, markers of tubular regeneration. Given the localization in foetal kidney and the distribution patterns in adults, it is tempting to speculate that TRA-1-60 may identify a population of cells contributing to repair of distal tubules in adult kidney.  相似文献   

11.
The induction of exercise-induced apoptosis in not actively involved in exercise organs, such as kidney could be a result of oxidative stress. Metallothionein (MT) exerts a protective effect in the cell against oxidative stress and apoptosis. We have previously demonstrated an increased incidence of apoptosis in distal tubular cells and collecting ducts in rat kidney after acute exercise. The present study was designed to test the hypothesis that MT may play a protective role in rat renal tubules against exercise-induced apoptosis after the acute exercise and regular training. Male Wistar rats were divided into control, acute exercised and 8-wk regularly trained groups. The kidneys were removed after a rest period of 6 h and 96 h. The ultrastructure of renal tubular cells was examined by electron microscopy. Apoptosis was detected in paraffin sections by the TUNEL technique. Expression of MT was examined by immunohistochemistry. The level of lipid peroxidation (thiobarbituric acid reactive substances - TBARS) was assayed in renal tissue homogenates. After acute exercise, the occurrence of apoptosis was restricted to distal tubules and collecting ducts of rat kidney, whereas the proximal tubules remained unaffected. The 8-wk training did not result in increased apoptosis in tubular cell. MT expression was confined exclusively to proximal tubules in all groups. However, it was significantly increased in acutely exercised animals, as compared to control and trained rats. After the 8-wk training, MT expression remained unaltered as compared to the control group. TBARS levels were significantly increased after acute exercise, while after regular training they remained unchanged. A significant correlation between TBARS level and MT expression was demonstrated. The findings could suggest a protective role of MT against oxidative stress and apoptosis in proximal tubular cells.  相似文献   

12.
《The Journal of cell biology》1994,127(6):1907-1921
A highly selective, amiloride-sensitive, epithelial sodium channel from rat colon (rENaC), composed of three homologous subunits termed alpha, beta, and gamma rENaC, has been cloned by functional expression and was proposed to mediate electrogenic sodium reabsorption in aldosterone- responsive epithelia. To determine whether rENaC could account for sodium absorption in vivo, we studied the cellular localization of the sodium channel messenger RNA subunits by in situ hybridization and their cellular and subcellular distribution by immunocytochemistry in the kidney, colon, salivary, and sweat glands of the rat. In the kidney, we show that the three subunit mRNAs are specifically co- expressed in the renal distal convoluted tubules (DCT), connecting tubules (CNT), cortical collecting ducts (CCD), and outer medullary collecting ducts (OMCD), but not in the inner medullary collecting ducts (IMCD). We demonstrate co-localization of alpha, beta, and gamma subunit proteins in the apical membrane of a majority of cells of CCD and OMCD. Our data indicate that alpha, beta, and gamma subunit mRNAs and proteins are co-expressed in the distal nephron (excepting IMCD), a localization that correlates with the previously described physiological expression of amiloride-sensitive electrogenic sodium transport. Our data, however, suggest that another sodium transport protein mediates electrogenic amiloride-sensitive sodium reabsorption in IMCD. We also localized rENaC to the surface epithelial cells of the distal colon and to the secretory ducts of the salivary gland and sweat gland, providing further evidence consistent with the hypothesis that the highly selective, amiloride-sensitive sodium channel is physiologically expressed in aldosterone-responsive cells.  相似文献   

13.
Toll receptors play a critical role in the rapid activation of innate immune responses to a variety of pathogens. In mammals, Toll-like receptors (TLR) have been found in both immune related cells and other cells. At present little is known about the participation of TLR in host defense mechanisms during parasitic infections. The aim of this study was to determine the expression of TLR2 and TLR4 genes in rat intestines during experimental hymenolepidosis. There is difference in expression of TLR2 and TLR4 genes in the colon and jejunum in uninfected rats: in the colon, mRNA of the examined TLR is present in much higher amounts than the jejunum, while the protein of the TLR also had a segmented specific distribution. In the jejunum isolated rats infected with Hymeolepis diminuta 6 and 8 days post infection (dpi), mRNA for TLR4 and TLR2 were significantly more strongly expressed in comparison with the uninfected controls. In the colon, a statistically significantly increased expression of TLR4 gene was observed only at 6 dpi, and at 8 dpi for the TLR2 gene. Moreover, we observed that during inflammation, the immunopositive cell number and the intensity of immunohistochemical staining (indicating the presence of TLR within intestinal epithelial cells), increased together with the duration of the infection period.  相似文献   

14.
The kidney of the Gpc3-/ mouse, a novel model of human renal dysplasia, is characterized by selective degeneration of medullary collecting ducts preceded by enhanced cell proliferation and overgrowth during branching morphogenesis. Here, we identify cellular and molecular mechanisms underlying this renal dysplasia. Glypican-3 (GPC3) deficiency was associated with abnormal and contrasting rates of proliferation and apoptosis in cortical (CCD) and medullary collecting duct (MCD) cells. In CCD, cell proliferation was increased threefold. In MCD, apoptosis was increased 16-fold. Expression of Gpc3 mRNA in ureteric bud and collecting duct cells suggested that GPC3 can exert direct effects in these cells. Indeed, GPC3 deficiency abrogated the inhibitory activity of BMP2 on branch formation in embryonic kidney explants, converted BMP7-dependent inhibition to stimulation, and enhanced the stimulatory effects of KGF. Similar comparative differences were found in collecting duct cell lines derived from GPC3-deficient and wild type mice and induced to form tubular progenitors in vitro, suggesting that GPC3 directly controls collecting duct cell responses. We propose that GPC3 modulates the actions of stimulatory and inhibitory growth factors during branching morphogenesis.  相似文献   

15.
Increased intrarenal atrial natriuretic peptide (ANP) mRNA expression has been reported in several disorders. To further investigate the action of renal ANP, we need to elucidate the exact site of its alteration in diseased kidneys. ANP mRNA and ANP were detected by in situ hybridization and immunohistochemistry in the kidneys from five normal and five diabetic rats. Renal ANP mRNA in eight normal and nine diabetic rats was measured by RT-PCR with Southern blot hybridization. In normal and diabetic rats, the distribution of ANP mRNA and ANP-like peptide was mainly located in proximal, distal, and collecting tubules. However, diabetic rats had significant enhancement of ANP mRNA and ANP-immunoreactive staining in the proximal straight tubules, medullary thick ascending limbs, and medullary collecting ducts. ANP mRNA in the outer and inner medulla of nine diabetic rats increased 5.5-fold and 3.5-fold, but only 1.8-fold in the renal cortex. This preliminary study showed that ANP mRNA and ANP immunoreactivity in proximal straight tubules, medullary thick ascending limb, and medullary collecting ducts apparently increased in diabetic kidneys. These findings imply that ANP synthesis in these nephrons may involve in adaptations of renal function in diabetes.  相似文献   

16.
17.
Data on the morphometric parameters of the renal corpuscle, renal tubules, and collecting ducts of male and female nutrias in postnatal ontogenesis were obtained. It was found that the area of the renal corpuscle, glomerulus, the cavity and lumen of the capsule, and the proximal tubule diameter in the right and left kidney of female and male nutrias in the first year of life increase. The distal tubule diameter also increases; however, the dynamics of its changes becomes sinuous after 4.5 months. The collecting duct diameter varies depending on gender, age, and renal topography. The nuclear-cytoplasmic ratio in the cells of proximal and distal tubules and collecting ducts changes in a sinuous manner and depends on the gender and age of nutrias. The minimum mean value of the nuclear-cytoplasmic ratio was found in the proximal tubule cells in the left kidney of 12-month-old female nutrias (0.162 ± 0.002), and the maximum value was found in the distal tubule cells in the left kidney of newborn male nutrias (0.435 ± 0.007).  相似文献   

18.
目的研究生长休止蛋白7(Gas7)在成年大鼠肾脏、心脏和肝脏的表达。方法成年SD大鼠16只,分别采用逆转录聚合酶链反应(RT-PCR)方法和免疫组织化学方法检测Gas7基因mRNA和蛋白在成年SD大鼠肾脏、心脏和肝脏的表达,并进行图像分析和统计学处理。结果RT—PCR结果显示,Gas7mRNA在肾脏高表达,在心脏的表达弱于肾脏(P〈0.05),而在肝脏的表达最弱,基本检测不到。免疫组化结果显示,在肾脏中,Gas7免疫阳性产物在近髓肾单位的近曲小管呈强阳性反应,在集合管表达较弱,在肾小球和其余肾小管未见表达;在心脏中,Gas7免疫阳性产物均匀分布于心肌细胞,呈中等强度反应,弱于肾脏(P〈O.05);在肝脏中,Gas7蛋白未见明显表达,与其mRNA在肝脏的表达相似。结论Gas7在大鼠肾脏、心脏和肝脏表达的不同,尤其在肾脏组织分布的差异性,提示Gas7在成年大鼠肾脏和心脏结构以及功能的维持中可能起着重要作用。  相似文献   

19.
Carbonic anhydrase isozyme XII (CA XII) is a novel membrane-associated protein with a potential role in von Hippel-Lindau carcinogenesis. Although Northern blotting has revealed positive signal for CA XII in normal human kidney, this is the first study to demonstrate its cellular and subcellular localization along the human nephron and collecting duct. Immunohistochemistry with a polyclonal antibody (PAb) raised against truncated CA XII revealed distinct staining in the basolateral plasma membrane of the epithelial cells in the thick ascending limb of Henle and distal convoluted tubules, and in the principal cells of the collecting ducts. A weak basolateral signal was also detected in the epithelium of the proximal convoluted tubules. In addition to the normal kidney specimens, this immunohistochemical study included 31 renal tumors. CA XII showed moderate or strong plasma membrane-associated expression in most oncocytomas and clear-cell carcinomas. The segmental, cellular, and subcellular distribution of CA XII along the human nephron and collecting duct suggests that it may be one of the key enzymes involved in normal renal physiology, particularly in the regulation of water homeostasis. High expression of CA XII in some renal carcinomas may contribute to its role in von Hippel-Lindau carcinogenesis.  相似文献   

20.
Aquaporins (AQPs) play fundamental roles in water and osmolyte homeostasis by facilitating water and small solute movement across plasma membranes of epithelial, endothelial, and other tissues. AQP proteins are abundantly expressed in the mammalian kidney, where they have been shown to play essential roles in fluid balance and urine concentration. Thus far, the majority of studies on renal AQPs have been carried out in laboratory rodents and sheep; no data have been published on the expression of AQPs in kidneys of equines or other large mammals. The aim of this comparative study was to determine the expression and nephron segment localization of AQP1-4 in Equus caballus by immunoblotting and immunohistochemistry with custom-designed rabbit polyclonal antisera. AQP1 was found in apical and basolateral membranes of the proximal convoluted tubules and thin descending limbs of the loop of Henle. AQP2 expression was specifically detected in apical membranes of cortical, medullary, and papillary collecting ducts. AQP3 was expressed in basolateral membranes of cortical, medullary, and papillary collecting ducts. Immunohistochemistry also confirmed AQP4 expression in basolateral membranes of cells lining the distal convoluted and connecting tubules. Western blots revealed high expression of AQP1-4 in the equine kidney. These observations confirm that AQPs are expressed in the equine kidney and are found in similar nephron locations to mouse, rat, and human kidney. Equine renal AQP proteins are likely to be involved in acute and chronic regulation of body fluid composition and may be implicated in water balance disorders brought about by colic and endotoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号