首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Stable transformation of Mesembryanthemum crystallinum L. (common ice plant) with a green fluorescent protein (GFP) construct targeted to the endoplasmic reticulum was obtained. Seven and fourteen days after germination seedlings were infected with Agrobacterium rhizogenes strain ARqua1 either by direct coating of the cut radicles with bacteria growing on solid medium or by immersion of the cut surface in bacterial suspension at different optical densities. Both methods of infection resulted in production of GFP-positive roots with a frequency ranging from 6 to 20% according to the age of the explants and the application procedure. The green fluorescing roots displayed the typical hairy root phenotype and were easily maintained in liquid medium without growth regulators for over 2 years. Stable expression of the transgene in the roots was confirmed by polymerase chain reaction (PCR), immunoblotting and the capacity of roots to grow and produce callus on kanamycin-enriched medium. Nineteen endogenous cytokinins were determined in transgenic and non-transformed roots. The results revealed significantly lower levels of the free bases of isopentenyladenine, dihydrozeatin, cis- and trans-zeatin, as well as a conspicuous decline in concentrations of the corresponding nucleosides and most nucleotides in transgenic roots compared to the wild type. Comparison of the cytokinin profiles in transgenic and non-transformed roots suggested that transformation by A. rhizogenes disturbed cytokinin metabolism during the early steps of biosynthesis. Calli obtained from transformed roots were GFP-positive and remained non-regenerative or displayed high rhizogenic potential depending on the auxin/cytokinin ratio in the medium. Calli and callus-derived roots showed a strong GFP signal for over 2 years.  相似文献   

2.
NaF mimicked the activation by thyrotropin of iodide binding to proteins and of glucose C-I oxidation but not the accumulation of intracellular colloid droplets or the stimulation of secretion in dog thyroid slices in vitro. On the contrary, NaF inhibited the two latter thyrotropin effects. The inhibitory action of F was partially relieved by the addition of glucose to the medium; it was mimicked by sodium oxamate. These data suggest that NaF depresses the endocytosis of colloid and thyroid secretion by inhibiting aerobic glycolysis in the follicular cell. NaF inhibited the activation of colloid droplet accumulation and secretion by N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) and the accumulation of cyclic AMP in thyrotropin-stimulated slices. This suggests an inhibition at the level of both cyclic AMP accumulation and cyclic AMP action. The inhibition by NaF and sodium oxamate of colloid droplet formation and thyroid secretion but not of glucose C-I oxidation in stimulated slices further confirms our conclusion that the latter effect is not merely a consequence of the activation by thyrotropin of colloid endocytosis.  相似文献   

3.
In G2 peas senescence only takes place in long days. In order to determine the role of cytokinins in this process the endogenous cytokinins from vegetative shoots of G2 peas were characterized using gas chromatography-mass spectroscopy following purification by HPLC. Cytokinins were extracted and purified with and without the addition of 15N labelled internal standards of several cytokinins to estimate cytokin content by isotope dilution in the mass spectra. Samples without internal standards were bioassayed after HPLC. Bioassays showed the presence of zeatin, zeatin riboside and zeatin-0-glucoside. The presence of zeatin was confirmed by its mass spectrum of its permethylated derivative. Tentative identification of zeatin riboside, zeatin-0-glucoside, dihydrozeatin, and dihydrozeatin-0-glucoside was obtained by the coincidence of the major ion for the permethylated natural and 15N labelled internal standards on GC-MS, and the similar coincidence of ions for permethylated zeatin riboside-0-glucoside by direct probe MS. There was no indication of the presence of significant quantities of zeatin-7-glucoside or zeatin-9-glucoside. The amounts in the tissue ranged from 200–1000 ng/kg fresh weight for each cytokinin and about 2–4 g/kg fresh weight for total cytokinins. There was no apparent difference in the levels in mature but pre-senescent shoots grown in long days and short days indicating that apical senesecence in G2 peas does not appear to be induced by a decline in cytokinin level in the shoots.Cytokinin abbreviations CK Cytokinin - Z trans zeatin - [9R]Z t-zeatin riboside - [9R-5P] Z t-zeatin riboside-5-monophosphate - (OG)Z t-zeatin-0-glucoside - (OG)[9R]Z t-zeatin riboside-0-glucoside - [7Z]G t-zeatin-7-glucoside - [9G]Z t-zeatin-9-glucoside - (diH)Z dihydrozeatin - (diH)[9R]Z dihydrozeatin riboside - iP N6(2-isopentenyl) adenine - [9R]iP N6(2-isopentenyl) adenosine Work performed while PJD was on leave at the University College of Wales at Aberystwyth.  相似文献   

4.
5.
Thiourea, PhNHC(S)NHP(O)(OPri)2 (LH) chelates of CoII, NiII, and PdII ions have been obtained and investigated by single-crystal X-ray diffraction, UV, IR, NMR spectroscopy, and EI mass-spectrometry. The unusual 1,3-N,S-coordination via sulfur and NP(O) nitrogen atoms has been found in the trans-square-planar NiL2 and PdL2 complexes, whereas the 1,5-O,S-coordination is realized in the tetrahedral CoL2 complex. DFT calculations have revealed significant stabilization of the 1,3-N,S-structures due to stronger crystal field and the NH-OP hydrogen bonds.  相似文献   

6.
Anthyllis vulneraria (Leguminosae, subfamily Lotoideae) has been investigated for flavonoids by means of polyamide column chromatography and TLC. The following flavonols have been characterized: quercetin, kaempferol and isorhamnetin, previously reported in this genus, and rhamnocitrin (I), rhamnetin (II), 3,7,4′-trihydroxy-flavone (III), fisetin (IV) and geraldol (V). This last compound has only been isolated once before as a natural product.  相似文献   

7.
Oscar Juárez  Federico Martínez 《BBA》2004,1658(3):244-251
Ustilago maydis mitochondria contain the four classical components of the electron transport chain (complexes I, II, III, and IV), a glycerol phosphate dehydrogenase, and two alternative elements: an external rotenone-insensitive flavone-sensitive NADH dehydrogenase (NDH-2) and an alternative oxidase (AOX). The external NDH-2 contributes as much as complex I to the NADH-dependent respiratory activity, and is not modulated by Ca2+, a regulatory mechanism described for plant NDH-2, and presumed to be a unique characteristic of the external isozyme. The AOX accounts for the 20% residual respiratory activity after inhibition of complex IV by cyanide. This residual activity depends on growth conditions, since cells grown in the presence of cyanide or antimycin A increase its proportion to about 75% of the uninhibited rate. The effect of AMP, pyruvate and DTT on AOX was studied. The activity of AOX in U. maydis cells was sensitive to AMP but not to pyruvate, which agrees with the regulatory characteristics of a fungal AOX. Interestingly, the presence of DTT during cell permeabilisation protected the enzyme against inactivation.The pathways of quinone reduction and quinol oxidation lack an additive behavior. This is consistent with the competition of the respiratory components of each pathway for the quinol/quinone pool.  相似文献   

8.
In a chemosystematic investigation of three Southern hemisphere species of Veronica, namely the Australian Veronica derwentiana Andrews and Veronica perfoliata R.Br. (formerly Derwentia species), and the New Zealand Veronica catarractae G. Forster (formerly a species of Parahebe), the water-soluble constituents were isolated and identified by spectroscopic methods. Apart from other iridoid glucosides common to the genus, three unusual substituted benzoyl esters of aucubin (derwentiosides A–C) were obtained from V. derwentiana and a chlorinated iridoid glycoside (catarractoside) from V. catarractae in addition to other iridoids common to the genus. The chemical profile of V. perfoliata is similar to that of Northern hemisphere species of Veronica because of the presence of characteristic 6-O-catalpol esters. The profile of V. derwentiana is unique, since 6-O-esters of aucubin rather than of catalpol dominate, however, the acyl groups are the same as those present in catalpol esters found in some other Veronica sections. V. catarractae also contains one of the catalpol esters characteristic of Veronica, but in addition three 6-O-rhamnopyranosyl substituted iridoid glycosides, one of which is 6-O-rhamnopyranosylcatalpol. Esters of the latter compound are previously only known from the more derived species in recent phylogenetic trees of sect. Hebe to which V. catarractae now also belongs, but as a more basal member.  相似文献   

9.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

10.
11.
Cyclic ADP-ribose (cADPR) metabolism in mammals is catalyzed by NAD glycohydrolases (NADases) that, besides forming ADP-ribose, form and hydrolyze the N1-glycosidic linkage of cADPR. Thus far, no cADPR phosphohydrolase was known. We tested rat ADP-ribose/CDP-alcohol pyrophosphatase (ADPRibase-Mn) and found that cADPR is an ADPRibase-Mn ligand and substrate. ADPRibase-Mn activity on cADPR was 65-fold less efficient than on ADP-ribose, the best substrate. This is similar to the ADP-ribose/cADPR formation ratio by NADases. The product of cADPR phosphohydrolysis by ADPRibase-Mn was N1-(5-phosphoribosyl)-AMP, suggesting a novel route for cADPR turnover.  相似文献   

12.
The new N,N,O heteroscorpionate ligand 3,3-bis(1-vinylimidazol-2-yl)propionic acid (Hbvip) (5) was synthesised in five steps starting from 1-vinylimidazole. This ligand is closely related to 3,3-bis(1-methylimidazol-2-yl)propionic acid (Hbmip), but contains two vinyl linker groups which can be used for radical-induced polymerisation reactions. The κ3-N,N,O coordination behaviour of 5 was proven by the synthesis of the tricarbonyl complexes [Re(bvip)(CO)3] (6), [Mn(bvip)(CO)3] (7) and [Cu(bvip)2] (8). To obtain good yields of 6, it was synthesised in water instead of THF. The ligand as well as all three complexes were characterised by X-ray crystallography. Copolymerisation of 5 with pure methyl methacrylate (MMA) or a combination of MMA and ethylene glycol dimethacrylate (EGDMA) led to the solid phases P1 and P2. Polymer-bound rhenium and manganese tricarbonyl complexes could be obtained by the reaction of deprotonated P1 with [MBr(CO)5] (M = Re, Mn) and also by copolymerisation of 6 and 7 with MMA. In both cases, the facial tripodal binding behaviour was evidenced by IR spectra of the polymers. Furthermore, the content of metal incorporated in the polymers was determined by elemental analysis, AAS or ICP-OES measurements. Reaction of the deprotonated solid phase P1 with copper(II) chloride led to a blue solid-phase (P1-Cu). The UV-Vis absorption maximum of P1-Cu is found at 615 nm, which is almost identical to that found for 8. Thereby, it seems likely that P1 is flexible enough to form bisligand complexes with copper(II). This means that the copper centres act as a kind of crosslinking agents. In contrast, the heterogeneous reaction of P2 with copper(II) chloride yielded a lime green solid phase (P2-Cu). The bathochromic shift of the absorption maximum by 102 nm suggests one-sided bound copper centres.  相似文献   

13.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived ω-aminoaldehydes to the corresponding ω-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with β-nicotinamide adenine dinucleotide (NAD+) at 2.4 and 2.15 Å resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD+ as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD+ binding site. While the NAD+ binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into γ-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, β-alanine betaine and γ-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.  相似文献   

14.
Cytokinin oxidases/dehydrogenases (CKOs) mediate catabolic regulation of cytokinin levels in plants. Several substrate analogs containing an unsaturated side chain were studied for their possible inhibitory effect on maize CKO (ZmCKO1) by use of various bioanalytical methods. Two allenic derivatives, N6-(buta-2,3-dienyl)adenine (HA-8) and N6-(penta-2,3-dienyl)adenine (HA-1), were identified as strong mechanism-based inhibitors of the enzyme. Despite exhaustive dialysis, the enzyme remained inhibited. Conversely, substrate analogs with a triple bond in the side chain were much weaker inactivators. The crystal structures of recombinant ZmCKO1 complexed with HA-1 or HA-8 were solved to 1.95 Å resolution. Together with Raman spectra of the inactivated enzyme, it was revealed that reactive imine intermediates generated by oxidation of the allenic inhibitors covalently bind to the flavin adenine dinucleotide (FAD) cofactor. The binding occurs at the C4a atom of the isoalloxazine ring of FAD, the planarity of which is consequently disrupted. All the compounds under study were also analyzed for binding to the Arabidopsis cytokinin receptors AHK3 and AHK4 in a bacterial receptor assay and for cytokinin activity in the Amaranthus bioassay. HA-1 and HA-8 were found to be good receptor ligands with a significant cytokinin activity. Nevertheless, due to their ability to inactivate CKO in the desired time intervals or developmental stages, they both represent attractive compounds for physiological studies, as the inhibition mechanism of HA-1 and HA-8 is mainly FAD dependent.  相似文献   

15.
Crassulacean acid metabolism (CAM) is a physiological adaptation of plants that live in stress environment conditions. A good model of CAM modulation is the epiphytic bromeliad, Guzmania monostachia, which switches between two photosynthetic pathways (C3–CAM) in response to different environmental conditions, such as light stress and water availability. Along the leaf length a gradient of acidity can be observed when G. monostachia plants are kept under water deficiency. Previous studies showed that the apical portions of the leaves present higher expression of CAM, while the basal regions exhibit lower expression of this photosynthetic pathway. The present study has demonstrated that it is possible to induce the CAM pathway in detached leaves of G. monostachia kept under water deficit for 7 d. Also, it was evaluated whether CAM expression can be modulated in detached leaves of Guzmania and whether some spatial separation between NO3 reduction and CO2 fixation occurs in basal and apical portions of the leaf. In addition, we analyzed the involvement of endogenous cytokinins (free and ribosylated forms) as possible signal modulating both NO3 reduction and CO2 fixation along the leaf blade of this bromeliad. Besides demonstrating a clear spatial and functional separation of carbon and nitrogen metabolism along G. monostachia leaves, the results obtained also indicated a probable negative correlation between endogenous free cytokinins – zeatin (Z) and isopentenyladenine (iP) – concentration and PEPC activity in the apical portions of G. monostachia leaves kept under water deficit. On the other hand, a possible positive correlation between endogenous Z and iP levels and NR activity in basal portions of drought-exposed and control leaves was verified. Together with the observations presented above, results obtained with exogenous cytokinins treatments, strongly suggest that free cytokinins might act as a stimulatory signal involved in NR activity regulation and as a negative regulator of PEPC activity in CAM-induced leaves of G. monostachia during a diel cycle.  相似文献   

16.
The pur3 gene of the puromycin (pur) cluster from Streptomyces alboniger is essential for the biosynthesis of this antibiotic. Cell extracts from Streptomyces lividans containing pur3 had monophosphatase activity versus a variety of mononucleotides including 3'-amino-3'-dAMP (3'-N-3'-dAMP), (N6,N6)-dimethyl-3'-amino-3'-dAMP (PAN-5'-P) and AMP. This is in accordance with the high similarity of this protein to inositol monophosphatases from different sources. Pur3 was expressed in Escherichia coli as a recombinant protein and purified to apparent homogeneity. Similar to the intact protein in S. lividans, this recombinant enzyme dephosphorylated a wide variety of substrates for which the lowest Km values were obtained for the putative intermediates of the puromycin biosynthetic pathway 3'-N-3'-dAMP (Km = 1.37 mM) and PAN-5'-P (Km = 1.40 mM). The identification of this activity has allowed the revision of a previous proposal for the puromycin biosynthetic pathway.  相似文献   

17.
Six acylated anthocyanins have been isolated from the flowers of Ipomoea congesta R. Brown. One has been previously described as an acylated peonidin derivative. Three others are isomers, derived from peonidin-3-(caffeylsophoroside)-5-glucoside. The fifth was characterised as peonidin-3-(p-coumarylcaffeylsophoroside)-5-glucoside and the last as peonidin-3-(coumarylsophoroside)-5-glucoside. It is noteworthy that the anthocyanins found in this species have the same glycosidic pattern, 3-sophoroside-5-glucoside, as those reported for the cyanidin derivatives in Ipomoea cairica flowers. Acylated anthocyanin occurrence in Tubiflorae order is of chemotaxonomical value.  相似文献   

18.
The cytosine analog 1,3-diaza-2-oxophenothiazine (tC) is a fluorescent nucleotide that forms Watson-Crick base pairs with dG. The Klenow fragment of DNA polymerase I (an A-family polymerase) can efficiently bypass tC on the template strand and incorporate deoxyribose-triphosphate-tC into the growing primer terminus. Y-family DNA polymerases are known for their ability to accommodate bulky lesions and modified bases and to replicate beyond such nonstandard DNA structures in a process known as translesion synthesis. We probed the ability of the Escherichia coli Y-family DNA polymerase DinB (Pol IV) to copy DNA containing tC and to incorporate tC into a growing DNA strand. DinB selectively adds dGTP across from tC in template DNA but cannot extend beyond the newly formed G:tC base pair. However, we find that DinB incorporates the tC deoxyribonucleotide triphosphate opposite template G and extends from tC. Therefore, DinB displays asymmetry in terms of its ability to discriminate against the modification of the DNA template compared to the incoming nucleotide. In addition, our finding that DinB (a lesion-bypass DNA polymerase) specifically discriminates against tC in the template strand may suggest that DinB discriminates against template modifications in the major groove of DNA.  相似文献   

19.
We studied expression of 90 miRNAs in STHdhQ111/HdhQ111 cells, a model for Huntington’s disease and compared with that obtained in STHdhQ7/HdhQ7 cells. Fifteen miRNAs were down regulated and 12 miRNAs were up regulated more than 2-fold. Such changes were statistically significant. One hundred and forty-two genes are experimentally known targets of these altered miRNAs. It has been predicted that miR-146a may target Tata Binding Protein (TBP). Using luciferase reporter assays with 3′-UTRs of TBP, over-expression and inhibition of miR-146a, we showed that miR-146a targets TBP. Regulation of TBP by miR-146a may contribute to HD pathogenesis.  相似文献   

20.
O(6)-alkylguanine-DNA alkyltransferase (AGT) repairs pro-mutagenic O(6)-alkylguanine and O(4)-alkylthymine lesions in DNA. The alkylated form of the protein is not reactivated; instead, it is rapidly ubiquitinated and degraded. Here, we show that alkylation destabilizes the native fold of the protein by 0.5-1.2 kcal/mole and the DNA-binding function by 0.8-1.4 kcal/mole. On this basis, we propose that destabilization of the native conformational ensemble acts as a signal for ubiquitination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号