首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Summary The pars intermedia of intact and experimental female minks has been studied by light, electron and fluorescence microscopy. The general structure of the mink intermediate lobe is described. Two main cell types are recognized. One, termed glandular cell, predominates in number and is characterized by the presence of electron-dense granules about 200 nm in diameter and numerous large vesicles up to 300 nm in diameter. The other, termed stellate cell, is devoid of cytoplasmic vesicles and granules and possesses microfilaments, junctional complexes and elongated processes inserted between the glandular cells. Different treatments (photostimulation and administration of hypertonic saline and metopirone) induced morphological reactions in the glandular cells. The significance of these changes and the possibility of a functional relation between the pars intermedia and ACTH secretion are discussed.Numerous nerve fibres and axon terminals containing electron-dense granules (60–120 nm) and electron-lucent vesicles (30–40 nm) are observed throughout the pars intermedia.With the histochemical fluorescence method of Falck-Hillarp a rich system of delicate fluorescent varicose fibres, sometimes provided with irregular swellings or droplets, is observed in the pars intermedia and also in the pars nervosa. Microspectrofluorometrically these fibres exhibit the spectral characteristics of catecholamines. All the cells of the pars intermedia and a large number of cells in the pars distalis show a yellowish weak fluorescence, which becomes much stronger after combined formaldehyde-ozone treatment. This cellular fluorophore shows the same microspectrofluorometric characteristics as does the fluorophores of tryptamine and of certain peptides with NH2-terminal tryptophan.Supported by the Swedish Fur Breeders' Association and the Swedish Natural Science Research Council (grant No. 2124). Thanks are due to Miss W. Carlsson and Miss Y. Lilliemarck for their helpful technical assistance.Supported by the Harald and Greta Jeanssons Stiftelse and by the Ford Foundation. The skilful technical assistance of Mrs. Eva Svensson and Miss Annika Borgelin is greatfully acknowledged.  相似文献   

2.
Summary The ultrastructure of the pars intermedia (PI) of the normal VII +/+ and hereditary nephrogenic diabetes inspidus DI Os/+ mice has been studied with particular reference to the morphology of the glandular cells and their innervation. Four types of cells were observed in both the genotypes of mice, 1) the light glandular cell, 2) the dark cell, 3) a type of cell similar to ependymal cells and 4) a small percentage of typical ACTH cells, observed mostly on the PI border of the cleft and rarely in the centre of PI. The predominant light glandular cells contain mainly two types of membrane bound granules: 1) electron dense core granules, which measure 1500–2500 Å and 2) electron lucent vesicles, which measure 3000–4000 Å in diameter. Granules of intermediate size with various density are also present in both types of mice. The electron dense core granules are predominant in DI Os/+ mice, whereas, electron lucent vesicles are predominant in the normal VII +/+ mice. Similar uniform size membrane bound electron dense granules have been observed in ACTH cells of PI and pars distalis. From earlier experimental evidences and the present observations, it is concluded that the dense core granules in PI may be synthesizing ACTH or ACTH-like substance. It is also discussed that these dense core granules may further mature and give rise to MSH in the form of electron lucent vesicles. If it is so, PI light glandular cells may have dual functions, of producing MSH and ACTH. One of the functions of ependymal-like cells, may be the transport of PI secretion.Three types of nerve endings are observed throughout the PI, making synaptic contact with the predominant cell type. The innervation is more in DI Os/+ mice than in normal mice. The classification of these nerves is according to Bargmann and co-workers 1) peptidergic neurosecretory fibers, contain mainly membrane bound dense core granules, measuring 1200 to 1800 Å, and are the classic neurosecretory granules; 2) adrenergic fibers, measuring 700–900 Å; 3) cholinergic fibers, measuring 300–400 Å. Adrenergic and cholinergic fibers are more towards the hypophysial cleft. The increased innervation, the synaptic contact, the extremely hypertrophied PI and the greater activity of its light glandular cells in the DI Os/+ mice show the PI is under the influence of the nervous system.This study was supported by MRC of Canada Grant No. MA-3759.  相似文献   

3.
Summary The pars intermedia of the hypophysis of normal and experimental rats was studied by electron microscopy. Observations of the hypophysis at various intervals following formalin induced stress or adrenalectomy indicate the existence of a functional relationship between the posterior lobe, the pars intermedia, and the adrenal cortex.Glandular cells of the normal pars intermedia are divided into two types, i. e., the light and dark cells. The former type dominates in number and is characterized by a large amount of cytoplasm filled with clear vesicles 250–350 m in diameter. Dark secretory granules smaller than 300 m are few in number and restricted to the Golgi region.After a single injection of formalin, the clear vesicles of the light cell dimmish and dark secretory granules varying in opacity increase in number. Transition from dark granules to clear vesicles is suggested. Three to five days after adrenalectomy, the light cells contain an abundance of moderately dense vesicles which are smaller than the larger more electron lucent vesicles of the normal light cells. The moderately dense vesicles are about 200 m in diameter and are extremely abundant filling the entire cytoplasm of the light cells 7 days after adrenalectomy.Bundles of unmyelinated nerve fibers are often observed in the pars intermedia, and a typical neuroglandular synapse was found in the pars intermedia of a sham-operated animal suggesting neural control of the secretion process of pars intermedia cells.The author wishes to express his hearty thanks to Dr. K. Kurosumi for his guidance throughout this work.  相似文献   

4.
Summary The innervation of the pancreas of the domestic fowl was studied electron microscopically. The extrapancreatic nerve is composed mostly of unmyelinated nerve fibers with a smaller component of myelinated nerve fibers. The latter are not found in the parenchyma. The pancreas contains ganglion cells in the interlobular connective tissue. The unmyelinated nerve fibers branch off along blood vessels. Their synaptic terminals contact with the exocrine and endocrine tissues. The synaptic terminals can be divided into four types based on a combination of three kinds of synaptic vesicles. Type I synaptic terminals contain only small clear vesicles about 600 Å in diameter. Type II terminals are characterized by small clear and large dense core vesicles 1,000 Å in diameter. Type III terminals contain small clear vesicles and small dense core vesicles 500 Å in diameter. Type IV terminals are characterized by small and large dense core vesicles. The exocrine tissue receives a richer nervous supply than the endocrine tissue. Type II and IV terminals are distributed in the acinus, and they contact A and D cells of the islets. B cells and pancreatic ducts are supplied mainly by Type II terminals, the blood vessels by Type IV terminals.This work was supported by a scientific research grant (No. 144017) and (No. 136031) from the Ministry of Education of Japan to Prof. M. Yasuda  相似文献   

5.
Summary The neurointermediate lobe of the hypophysis in the Chameleon (Chamaeleo dilepis) was examined with light and electron microscopic methods, with special reference to the cytology of the pars intermedia (PI). The PI is the largest lobe of the hypophysis consisting of (1) dark cells with secretory granules ranging from 200–600 nm; (2) light cells, far fewer in number, containing granules 150–300 nm in diameter; (3) stellate, non-secretory cells. The secretory cells abut onto the perivascular basal lamina of the capillary sinusoids while their apical part borders an intercellular space. This surface of the cells often bears a cilium. The granules arise from the Golgi cisternae while small detached vesicles are found between circumscribed sites of the cell membrane and the Golgi apparatus. No nervous elements were found in the pars intermedia and it is assumed that the regulation of this lobe is purely humoral. This is supported by the presence of three types of nerve terminals in the pars nervosa: (a) terminals with large secretory granules and small vesicles; (b) terminals with dense-core vesicles and small vesicles; (c) terminals with small vesicles only. All of these are secretory as indicated by the presence of the synaptic semidesmosomes formed with the perivascular basal lamina.I would like to thank Mr. W.N. Newton for his skill and aid in all aspects of this work, Mr. A. Ansary for expert photographic assistance and the Central Pathology Laboratory, University of Dar es Salaam, for the electron microscopic facilities provided. Research sponsored by the University of Zambia Grants J02-18-00 and Medic 74/6  相似文献   

6.
Summary The central catecholamine innervation of the pituitary neural lobe and pars intermedia of the rat have been identified ultrastructurally and their organization has been investigated in a combined fluorescence histochemical and electron microscopical study. The dopamine analogues, 5-hydroxydopamine and 6-hydroxydopamine, were used to label the catecholamine terminals, and to enable the direct correlation between the fluorescence microscopical and the electron microscopical pictures.The fibre type that was identified as catecholamine-containing was ultrastructurally chiefly characterized by dense-cored vesicles, 500–1200 Å in diameter, intermingled with varying numbers of small empty vesicles. 5-hydroxydopamine was selectively accumulated in these fibres and caused an increased electron density of the granular vesicles as well as of some small normally agranular vesicles, and systemically administered 6-hydroxydopamine caused a selective degeneration of these fibres, most prominently within the neural lobe. The dopaminergic terminals of the neural lobe showed frequent close contacts (80–120 Å), without real membrane thickenings, to neurosecretory axons and to pituicyte processes. It is suggested that these close contacts might signify a direct dopaminergic influence on the neurosecretory axons and/or on the pituicyte processes. The identified central catecholamine fibres were also found to make common synapse-like contacts on the pars intermedia cells, whereas the innervation by neurosecretory fibres was very rare. This suggests that the direct central nervous control of the rat pars intermedia is exerted by the catecholamine neurons. A very special feature of the catecholamine fibres in the pituitary is the occurrence of peculiar, large dopamine-filled droplet-like swellings. Electron microscopically, such large axonal swellings (more than 2 in diameter) were found to contain, in addition to the characteristic vesicles and organelles, strongly osmiophilic lamellated membrane complexes resembling myelin bodies and multivesicular bodies encircling disintegrated vesicles, suggesting that these droplet fibres represent dilated stumps of spontaneously degenerating dopaminergic axons. It is suggested that the dopaminergic neural lobe fibres are undergoing continuous reorganization through degeneration—regeneration cycles, a phenomenon previously suggested for the neurosecretory axons of the neural lobe.Supported by the Deutsche Forschungsgemeinschaft.Supported by Svenska Livförsäkringsbolags Nämnd för Medicinsk Forskning, by The Medical Faculty, University of Lund and by the Ford Foundation.  相似文献   

7.
Summary A special type of myoneural junction has been observed in the extraocular muscles of the rat with electron microscopy. These axon terminals are derived from unmyelinated nerves and contain synaptic vesicles and mitochondria. The terminals are invested by teloglia cells and separated by a synaptic cleft of about 500 Å from a slow-type muscle fibre. From the nerve ending a pseudopod-like evagination projects into the muscle cell. The membranes of this evagination and the muscle cells are only separated by a narrow cleft of about 100 Å, which is devoid of the basement membrane-like material typical of ordinary myoneural junctions. The evagination contains fewer axonal vesicles than other regions of the terminal axoplasm and the postsynaptic part of the muscle plasma membrane in this special region does not exhibit the postsynaptic thickening characteristic of ordinary myoneural junctions.The author thanks ProfessorAntti Telkkä, M.D., Head of the Electron Microscope Laboratory, University of Helsinki, for permission to use the facilities of the laboratory.  相似文献   

8.
Summary In the crested newt, the ultrastructural organization of the pars nervosa is analogous to that already known in non-mammal tetrapods. An orderly array of ependymal cells makes up the inner limiting layer while less abundant pituicytes are irregularly distributed within this organ. Light and dark pituicytes can be distinguished on the basis of the relative density of the cytoplasmic matrix and the distribution of the cell organelles.Both the ependymal cells and pituicytes are rich in dense bodies and possess extensive processes which ramify among the nerve fibers, often reaching the pericapillary space which they can line for long distances.The main components of the pars nervosa are nerve fibers and nerve terminals (type A), containing electron dense granules 1200–2000 Å in diameter together with clear vesicles averaging 250–400 Å. These fibers are likely to correspond to the aldehyde fuchsin positive neurosecretory fibers revealed by light microscopy. Differences in the granule size within the fibers and terminals lead to further recognition of two subgroups (A1 and A2).Other fibers and terminals (type B) containing clear vesicles and granular vesicles 600 to 1000 Å in diameter, possibly of aminergic type, are also encountered. These fibers are rare and can be seen only in the portion of the pars nervosa near the pars intermedia of the adenohypophysis.Lastly, fibers and terminals containing only clear vesicles ranging from 250 to 400 Å (type C) are occasionally found.Nerve endings are often formed by type A fibers on the perivascular space and on the perivascular processes of the ependymal cells and pituicytes. In agreement with recent findings available in the literature, the occurrence of synaptoid contacts between these terminals and both pituicytes and ependymal cells may confirm the active role of these cells in transport and release of neurosecretion.Work supported by a grant from the Consiglio Nazionale delle Ricerche.We are gratefully indebted to Dr. G. Gendusa and P. Balbi for technical assistance, dr. G. E. Andreoletti for statistical analysis.  相似文献   

9.
Summary Light microscopy of coronal sections of the sheep pars intermedia revealed a compact, incompletely lobulated V-shaped region about 15–20 cells thick, situated between the pars distalis and the pars nervosa. A prominent hypophysial cleft and follicles containing a colloid-like substance were seen.Using electron microscopy, five cell types could be distinguished: pars intermedia glandular cells, pars distalis-like glandular cells, interstitial cells, follicular cells and cleft lining cells. The polyhedral to pear-shaped pars intermedia glandular cells predominated. They contained dense-cored, membrane-bound granules near the Golgi complex, and larger, irregular vesicles with finely granular contents of varying electron density throughout the remaining cytoplasm; exocytotic release of granules was occasionally observed. Smaller numbers of cells resembling those seen in the pars distalis were scattered throughout the pars intermedia. Interstitial cells usually possessed elongated cytoplasmic processes which extended between the glandular cells, and were characterized by deeply indented nuclei, elaborate junctional complexes and an absence of cytoplasmic granules. Cells lining the follicles resembled the interstitial cells. The major cells bordering the hypophysial cleft were triangular in section and bore irregular microvilli on their free surface. The pars intermedia appeared to be less vascular than the remainder of the hypophysis and only occasional fenestrated capillaries were seen. Nerve profiles were rare.  相似文献   

10.
The pars intermedia of the pituitary in the rabbit and hare is abundantly innervated by axons reacting selectively with antibodies against oxytocin. These axons contain dense secretory vesicles about 140 nm in diameter, i.e., smaller than those in the neurosecretory axons of the neural lobe. No fiber elements staining for other peptides (vasopressin, somatostatin, substance P) were observed in the pars intermedia, except rare leu-enkephalin axons restricted to the rostral zone of the gland. Dopaminergic innervation appears to be completely absent from the intermediate lobe. This was shown by the lack of reaction with an antibody against tyrosine-hydroxylase, which did reveal a well-developed tubero-infundibular system of nerve fibers. Axons reacting with an antibody against serotonin were irregularly distributed in the pars intermedia. In the absence of dopaminergic axons, the extensive oxytocin-like innervation may play a major role in regulating the melanotrophic cell activity in the Leporidae.  相似文献   

11.
Summary Two cell types can be distinguished in the pars intermedia of Klauberina: (1) Glandular cells, which form a single-layered columnar epithelium on the vascular septum which divides the pars nervosa from the pars intermedia. (2) Marginal cells which form a flattened epithelium over the glandular cells and line the hypophysial cleft. Occasional projections from the marginal cells extend between the glandular cells to contact the basement membrane of the vascular septum, and occasional projections of the vascular septum extend across the glandular epithelium to reach the marginal epithelium. Both cell types are AF negative. The granules of the glandular cells are strongly PAS positive, and acidophilic in response to Mallory's trichrome stain. In electron micrographs, the glandular cells contain large quantities of secretory granules. In one class of cells, they range from 2,000 to 2,500 Å in diameter, in the other, from 4,000 to 5,000 Å. Electron-dense granules 1,000 to 1,500 Å in diameter occur in the cytoplasm of the marginal cells in the region of contact with the vascular septum. Hence more than one active principle may be produced by the pars intermedia.No nerve endings of any kind are present in the pars intermedia. Therefore, synaptic contact of neurons with the secretory cells seems not to be necessary for the regulation of their secretory activity as appears to be the case in other vertebrate groups. It is suggested that regulatory factors are secreted in the pars nervosa and transported to the pars intermedia via the vascular septum.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.This investigation was supported in part by a Public Health Service fellowship 1 FZ HD 32, 949-01 REP from the National Institute of Child Health and Human Development. The authors wish to thank Professor H. Heller for his encouragement and kind cooperation during this study and Professor H. D. Dellmann for providing the facilities of his department. They are indebted to the officers and men of the Naval Ordinance Test Station, Pasadena and San Clemente Island, California, for their help in obtaining animals for this investigation.  相似文献   

12.
Summary An attempt was made to correlate functional changes in the neurohypophysis of the White-crowned Sparrow, Zonotrichia leucophrys gambelii, with morphologic features on the light- and electron-microscope levels. The aldehyde-fuchsin-staining anterior median eminence possesses essentially the same ultrastructural features as the non-staining posterior median eminence. The axon terminals are characterized by the presence of a large number of small vesicles (approximately 400 Å in diameter) and occasional electron-dense granules. The more-or-less depleted anterior median eminence occasionally evident in the photosensitive bird showing testicular development is indistinguishable ultrastructurally from the more intensely staining median eminence generally characteristic of the photorefractory bird. In the median eminence, stainability and functional state do not seem to be correlated with changes in the type, size or number of vesicles. A slight increase in the number of granules was noted in the photorefractory bird but this was considered insufficient basis to account for differences in stainability.The pars nervosa, on the other hand, responded to osmotic stimuli (saline drinking water) by loss of stainability and decrease in numbers of elementary neurosecretory granules. Small vesicles are also present in the pars nervosa axon terminals, but are intermingled with neurosecretory granules in normal birds. Acute-osmotic birds, however, had axon terminals almost entirely occupied by small vesicles.It is to be emphasized that the pars nervosa and the median eminence are two structurally very different regions of the neurohypophysis. The basis for aldehyde-fuchsin staining in the median eminence appears to differ from that in the pars nervosa. The implications of these findings are considered in regard to hypothalamic control over gonadotropic activity in the White-crowned Sparrow.Dedicated to Professor Dr. W. Bargmann in honor of his 60th birthday.This investigation was supported by grant GB-2484 from the National Science Foundation to Professor Bern, grant GB-2819 from the National Science Foundation to Professor Mewaldt, and grant NB-01353 from the National Institutes of Health to Professor Farner. The authors wish to express their appreciation of the technical assistance of Mrs. Irene Brown, Mr. John Butchart, Sally S. Kibby, Mrs. Carol Nicoll, and Mr. John Striffler. Mrs. Emily Reid kindly prepared the histograms.  相似文献   

13.
Summary The ultrastructure of the pars intermedia of Rana catesbeiana tadpoles was studied following isolation from the hypothalamus, in vivo after sectioning of the pituitary stalk, and in vitro after implantation of the pituitary into a piece of tail fin. Both experimental procedures were followed by rapid and sustained skin darkening. Pituitaries from normal light and dark adapted tadpoles served as controls.In 4-hour disinhibited glands, melanotrophs revealed hyperactive Golgi bodies, colloid vesicles (1–2 microns) in close proximity to axon terminals, and no apparent loss of secretory granules. At 24 hours extracellular colloid adjacent to axon terminals was found, and extensive arrays of RER appeared in the melanotrophs. Obvious granule loss from secretory cells occurred within a week, by which time the cytoplasm was occupied by large cisterns of SER and RER and abundant free ribosomes. Dense core vesicles (600–900 Å) in aminergic nerve terminals disappeared shortly after isolation of the pituitary from the hypothalamus, and only decreasing numbers of translucent vesicles (200–300 Å) were found.The functional significance of these changes is discussed, with particular emphasis on the mode of acute hormone release.This study was carried out in the Department of Anatomy, Albert Einstein College of Medicine, New York. I am greatly indebted to Professor Berta Scharrer and Professor William Etkin for their sponsorship, guidance and encouragement. Warm thanks are due to Mrs. Sarah Wurzelmann and Mr. Stanley Brown for their technical assistance. Support from U.S.P.H.S. grants NIH-NB 00840, NIH R01 Am 3984 and NSF Grant 12353 is gratefully acknowledged.  相似文献   

14.
Summary The smooth muscle cells studied contain a central core of thick and thin myofilaments surrounded by a peripheral layer of myofilament-free cytoplasm. Numerous vesicles, tubules, microfilaments, mitochondria and fine granules are present in the peripheral cytoplasm. Glycogen particles are distributed in large or small groups in both the peripheral cytoplasm and among the myofilaments. In contracted muscle cells the peripheral cytoplasm bulges out at regular intervals into the intercellular connective tissue. Numerous close contacts between single, usually naked, axons and these cytoplasmic protrusions occur. The axons at these contacts contain numerous small (500 Å in diameter) and large vesicles (800–1000 Å in diameter). Sometimes a number of axons simultaneously form close contacts with a muscle cell. These close contacts are considered to be the sites at which transmitter is released and acts on the muscle cell membrane.I wish to thank Professor G. Burnstock for making laboratory facilities available. This work has been supported by the Australian Research Grants Committee.  相似文献   

15.
Summary In an attempt to study further the stellate cell and its functions, the ultrastructure of this cell type in the neurointermediate lobe of the bullfrog, Rana catesbeiana, was examined in both organ and dissociated-cell culture. The cytoplasmic activity of stellate cells from neurointermediate lobes incubated 3 1/2 or 5 1/2 h was greater than that of those in vivo. Mitochondria and bundles of cytoplasmic filaments were numerous, in addition to prominent, well-developed Golgi complexes with associated vesicles. The most striking ultrastructural feature was the presence of phagocytic vacuoles that contain cellular debris. The stellate cells were seen to form cytoplasmic processes that phagocytosed this extracellular debris identifiable as belonging to the secretory cells of the pars intermedia. The stellate cells from the dissociated-cell preparations were also seen to contain debris within phagocytic vacuoles. In those neurointermediate lobes transplanted for 3 1/2 to 4 days into the anterior chamber of the eye, the stellate cells demonstrated similar phagocytic ability, but the phagocytic vacuoles contained material that seemed to be at a later stage of degradation. In all three of these conditions, the stellate cells were not seen to release this cellular debris nor were they seen to undergo cell division. These glial-like stellate cells of the pars intermedia acted as macrophages in all three of these experiments. There is now, therefore, a need to determine under what conditions, if any, these stellate cells function in vivo as macrophages.Supported by NSF Program for Small College Faculty Engaged in Research at Larger Institutions and Department of Energy — Associated Western Universities Faculty Participation Program. The authors thank Dr. W. Ferris and Dr. J. Berliner for the use of the electron microscopy facilities at the University of Arizona and Nuclear Medicine Laboratory, UCLA, respectively. Warm thanks are due to Ms. Ruth Cole for technical assistance  相似文献   

16.
Summary Interstitial cells of hydra are small undifferentiated cells containing an abundance of free ribosomes and few other cytoplasmic organelles. They are capable of differentiating into epitheliomuscular, digestive, glandular, nerve cells, and cnidoblasts. Developing epitheliomuscular and digestive cells acquire bundles of filaments, 50 Å in diameter, which later are incorporated into the muscular processes. Early gland cells develop an elaborate rough-surfaced endoplasmic reticulum and one or more Golgi apparatus. Secretory granules originate in the Golgi region eventually filling the apex of the cell. Neurons are recognized first by the presence of an elaborate Golgi apparatus, absence of a well-developed endoplasmic reticulum, and later the appearance of cytoplasmic processes. The most striking feature of nematocyst formation by cnidoblasts is the presence of a complex distribution system between protein synthesizing rough-surfaced endoplasmic reticulum and the nematocyst. This system consists of connections between cisternae of the endoplasmic reticulum with smooth Golgi vesicles which in turn are connected to minute tubules, 200 Å in diameter. The tubules extend from the Golgi region around the nematocyst finally entering the limiting membrane of the nematocyst. It is suggested that the interstitial cells of hydra represent a model system for the investigation of many aspects of cell differentiation.This work was supported by grants from the National Cancer Institute (TlCA-5055) and from the National Institute of Arthritis and Metabolic Diseases (AM-03688), National Institutes of Health, Department of Health, Education and Welfare.The author is indebted to Dr. Russell J. Barrnett for his guidance and interest throughout this investigation.  相似文献   

17.
The pituitary pars intermedia of Camelus dromedarius is well developed and completely surrounds the pars nervosa. Two major groups of cells are present: endocrine (ec) and glial-like cells (glc). The ec group is composed of three morphologically distinct cell types. Type I, or polyhedral light cells (LC-I) and type II, or polyhedral dark cells (DC-II), have secretory granules of heterogeneous electron density whose size ranges from 170 to 300 nm. Type III cells are elongated with homogeneous electron-dense secretory granules of 80–200 nm. The glc make up an organized network, form follicles in the centrolobular zones and are positive for vimentin and S-100β immunolabelling. The nerve fibres penetrating the lobe are numerous, and can be classified into two types according to the membrane bound vesicles found in their endings (ne). Ultrastructural quantitative analysis revealed significant variations in PI elements between winter and summer seasons (F = 8.014, p = 0.006). DC-II cells characterized by developed biosynthetic machinery and a large pool of secretory granules storage are increased with the ne in winter. However, LC-I cells showing frequent cytoplasmic degranulation are predominant with glc in summer. Thus, important cellular remodelling occurs in the dromedary PI that may depend upon, or perhaps anticipate, external living conditions.  相似文献   

18.
Summary Two types of glandular cells are present in the pars intermedia of the loach, Misgurnus fossilis. Basophils are characterized by the presence in their cytoplasm of numerous secretory granules containing electron-dense and homogeneous material and by scarce endoplasmic reticulum. Weak acidophils contain in their cytoplasm abundant endoplasmic reticulum and numerous granules of different electron densities.The distal part of the neurohypophysis is composed of several types of neurosecretory axons, strongly branched pituicytes, numerous capillaries, and connective tissue elements. The axon terminals form the neuroglandular, neurovascular and neurointerstitial contacts. Some axon terminals are closely apposed to the basement membrane separating neurohypophysis from meta-adenohypophysis. At points of absence of continuity of this membrane, some neurosecretory axons become directly contiguous with cytoplasmic membranes of the intermedia cells.The investigation was partly supported by a research grant from the Zoological Committee of the Polish Academy of Sciences.  相似文献   

19.
Summary The synaptic contacts made by carp retinal neurons were studied with electron microscopic techniques. Three kinds of contacts are described: (1) a conventional synapse in which an accumulation of agranular vesicles is found on the presynaptic side along with membrane densification of both pre- and postsynaptic elements; (2) a ribbon synapse in which a presynaptic ribbon surrounded by a halo of agranular vesicles faces two postsynaptic elements; and (3) close apposition of plasma membranes without any vesicle accumulation or membrane densification.In the external plexiform layer, conventional synapses between horizontal cells are described. Horizontal cells possess dense-core vesicles about 1,000 Å in diameter. Membranes of adjacent horizontal cells of the same type (external, intermediate or internal) are found closely apposed over broad regions.In the inner plexiform layer ribbon synapses occur only in bipolar cell terminals. The postsynaptic elements opposite the ribbon may be two amacrine processes or one amacrine process and one ganglion cell dendrite. Amacrine processes make conventional synaptic contacts onto bipolar terminals, other amacrine processes, amacrine cell bodies, ganglion cell dendrites and bodies. Amacrine cells possess dense-core vesicles. Ganglion cells are never presynaptic elements. Serial synapses between amacrine processes and reciprocal synapses between amacrine processes and bipolar terminals are described. The inner plexiform layer contains a large number of myelinated fibers which terminate near the layer of amacrine cells.This work was supported by an N.I.H. grant NB 05404-05 and a Fight for Sight grant G-396 to P.W. and N.I.H. grant NB 05336 to J.E.D. The authors wish to thank Mrs. P. Sheppard and Miss B. Hecker for able technical assistance. P.W. is grateful to Dr. G. K. Smelser, Department of Ophthalmology, Columbia University, for the use of his electron microscope facilities.  相似文献   

20.
Summary The rat median eminence contains at least three kinds of granules or vesicles: 1. large electron-dense granules (perhaps carriers of neurohypophysial hormones), 2. small electron-dense granules with or without haloes (perhaps carriers of catecholamines) and 3. synaptic vesicle-like structures (perhaps carriers of acetylcholine). The former two electrondense granules exist in separate axons but they coexist with the latter vesicles in the same axons.The pars nervosa shows basically a similar structure to the median eminence. However, the axons containing the small electron-dense granules are very few. In the pars tuberalis, there are at least two types of cells: the cells of one type contain much cytoplasm with large round nuclei and those of the other type contain a small amount of cytoplasm with polymorphic nuclei. The cells of the former include multivesicular bodies and secretory granules, but those of the latter do not. Some of capillaries of the primary plexus are surrounded by the cells of the pars tuberalis on one side and by neurosecretory axon endings on the other side.The median eminence contains high concentration of acetylcholine or an acetylcholine-like substance and shows neurohypophysial hormone activity.Aided by Grant A-3678 from the United States National Institute of Arthritis and Metabolic Diseases. The authors are indebted to Dr. Welsh, Harvard University, for the kind gift of Mytolon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号