首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The hypothesized role of secreted reducing compounds in FeIII reduction has been examined with Fe-deficient peanuts (Arachis hypogaea L. cv A124B). Experiments involved the exposure of roots to (a) different gas mixtures, (b) carbonyl cyanide m-chlorophenylhydrazone (CCCP), and (c) agents which impair membrane integrity.

Removing roots from solution and exposing them to air or N2 for 10 minutes did not result in any accumulation in the free space of compounds capable of increasing rates of FeIII reduction when roots were returned to solutions. On the contrary, exposing roots to N2 decreased rates of FeIII reduction. CCCP also decreased rates of FeIII reduction.

Acetic acid and ethylenediaminetetraacetic acid (disodium salt) (EDTA) impaired the integrity and function of the plasma membranes of roots of Fe-deficient peanuts. That is, in the presence of acetic acid or EDTA, there was an efflux of K+ from the roots; K+ (86Rb) uptake was also impaired. Acetic acid increased the efflux from the roots of compounds capable of reducing FeIII. However, both acetic acid and EDTA caused rapid decreases in rates of FeIII reduction by the roots. In addition to peanuts, acetic acid also decreased rates of FeIII reduction by roots of Fe-deficient sunflowers (Helianthus annuus L. cv Sobrid) but not maize (Zea mays L. cv Garbo).

These results suggest that, at least in the short term, the enhanced FeIII reduction by roots of Fe-deficient plants is not due to the secretion of reducing compounds.

  相似文献   

2.
Silicon (Si) uptake has been extensively examined in rice (Oryza sativa), but it is poorly understood in other gramineous crops. We identified Low Silicon Rice 2 (Lsi2)-like Si efflux transporters from two important gramineous crops: maize (Zea mays) and barley (Hordeum vulgare). Both maize and barley Lsi2 expressed in Xenopus laevis oocytes showed Si efflux transport activity. Furthermore, barley Lsi2 was able to recover Si uptake in a rice mutant defective in Si efflux. Maize and barley Lsi2 were only expressed in the roots. Expression of maize and barley Lsi2 was downregulated in response to exogenously applied Si. Moreover, there was a significant positive correlation between the ability of roots to absorb Si and the expression levels of Lsi2 in eight barley cultivars, suggesting that Lsi2 is a key Si transporter in barley. Immunostaining showed that maize and barley Lsi2 localized only at the endodermis, with no polarity. Protein gel blot analysis indicated that maize and barley Lsi2 localized on the plasma membrane. The unique features of maize and barley Si influx and efflux transporters, including their cell-type specificity and the lack of polarity of their localization in Lsi2, indicate that these crops have a different Si uptake system from that in rice.  相似文献   

3.
Growth and electrophysiological studies in roots of intact diclofop-methyl susceptible and resistant seedlings were conducted to test the hypothesis that the herbicide acts primarily as a proton ionophore. The ester formulation of diclofop, at 0.2 micromolar, completely inhibited root growth in herbicide-susceptible oat (Avena sativa L.) after a 96 hour treatment, but induced only a delayed transient depolarization of the membrane potential in oat root cortical cells. Root growth in susceptible maize (Zea mays L.) seedlings was dramatically reduced by exposure to 0.8 micromolar diclofop-methyl, while the same diclofop-methyl exposure hyperpolarized the membrane potential within 48 hours after treatment. Furthermore, exposure of maize roots to the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) (50 nanomolar), inhibited growth by only 31%, 96 hours after treatment, while the same CCCP exposure depolarized the resting potential by an average of 32 millivolts. Thus, the protonophore hypothesis cannot account for a differential membrane response to phytotoxic levels of diclofop-methyl in two susceptible species. From the results of others, much of the evidence to support the protonophore hypothesis was obtained using high concentrations of diclofop acid (100 micromolar). At a similar concentration, we also report a rapid (3 minute) diclofop-induced depolarization of the membrane potential in roots of susceptible oat and maize, moderately tolerant barley (Hordeum vulgare L.), and resistant pea (Pisum sativum L.) seedlings. Moreover, 100 micromolar diclofop acid inhibited growth in excised cultured pea roots. In contrast, 100 micromolar diclofop-methyl did not inhibit root growth. Since the membrane response to 100 micromolar diclofop acid does not correspond to differential herbicide sensitivity under field conditions, results obtained with very high levels of diclofop acid are probably physiologically irrelevant. The results of this study suggest that the effect of diclofop-methyl on the membrane potentials of susceptible species is probably unrelated to the primary inhibitory effect of the herbicide on plant growth.  相似文献   

4.
Liu Z  Bushnell WR  Brambl R 《Plant physiology》1987,84(4):1385-1390
Selected fluorescent dyes were tested for uptake by mitochrondria in intact cells of barley, maize, and onion. The cationic cyanine dye 3,3′-diheptyloxacarbocyanine iodide [DiOC7(3)] accumulated in mitochondria within 15 to 30 minutes without appreciable staining of other protoplasmic constituents. The number, shape, and movement of the fluorescent mitochondria could be seen readily, and the fluorescence intensity of the mitochondria could be monitored with a microscope photometer. Fluorescence was eliminated in 1 to 5 minutes by the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) indicating that maintenance of dye concentration was dependent on the inside-negative transmembrane potential maintained by functional mitochondria. Fluorescence of prestained mitochondria was enhanced within 5 to 10 minutes after addition of 0.1 millimolar kinetin to cells. The fluorescence in kinetintreated cells was dissipated by CCCP. These results suggest that kinetin interacted with respiratory processes resulting in higher potential across the mitochondrial membrane.  相似文献   

5.
Summary We have investigated the mugineicacid-Fe transport activity of Fe-deficient barley roots, using the multi-compartment transport box system. The roots maintained Fe transport activity for 20 h after excision. The following results were obtained. (1) In Fe-deficient roots, mugineic acid addition enhanced the transport of Fe by 32.2 times over that of the control (with FeC13 addition). (2) The mugineic-acid-55Fe transport activity of Fe-deficient roots was 18.4-fold higher than that of the Fe-sufficient roots. (3) The mugineic-acid-55Fe transport activity was decreased (7.13% based on the control) by treatment with 5 M carbonylcyanidem-chlorophenyl hydrazone (CCCP). Pretreatment with 0.1 mM dicyclohexyl carbodiimide (DCCD) lowered the transport activity (10.7% based on the control) and 1 mMN-ethylmaleimide (NEM) pretreatment reduced the transport activity to a value equivalent to 2.41% of that in the control. It is concluded that mugineicacid-Fe transporter is induced in its activity and/or amount by Fe-deficiency treatment and has an SH residue at its active site, and that the transporter needs the proton motive force produced by ATPase. We detected three polypeptides (14, 28 and 40 kDa) in the root plasma membrane that were induced under Fe-deficiency treatment.Abbreviations p-APMSF (p-amidinophenyl)methanesulfonyl fluoride hydrochloride - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD dicyclohexylcabodiimide - DMSO dimethyl sulfoxide - MA mugineic acid - NEM N-ethylmaleimide  相似文献   

6.
Zea mays (maize) and Hordeum vulgare (barley) plants were analyzed in order to study the variation in response to Cadmium (Cd) toxicity based on development of leaf symptoms, effect in dry matter production, Cd uptake, lipid peroxidation and effect on cell ultrastructure in leaves and roots. Cd accumulation in roots of Z. mays and H. vulgare was 18–50 times higher than in the aerial parts. Malondialdehyde (MDA) content was more affected in the roots of both Z. mays and H. vulgare than in shoots (60 and 56–51 and 40%, respectively). At ultrastructural level, in Cd treated seedlings, a decline in the vacuolar content of barley roots cells and maize leaf cells was observed. Results corroborate that these gramineous crops can uptake and accumulate substantial amounts of Cd especially in roots. Therefore, H. vulgare and Z. mays could have a phytostabilization potential and thereafter could be tested in phytoremediation technologies.  相似文献   

7.
Root temperature strongly affects shoot growth, possibly via “nonhydraulic messengers” from root to shoot. In short-term studies with barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) seedlings, the optimum root temperatures for leaf expansion were 25° and 35°C, respectively. Hydraulic conductance (Lp) of both intact plants and detached exuding roots of barley increased with increasing root temperature to a high value at 25°C, remaining high with further warming. In sorghum, the Lp of intact plants and of detached roots peaked at 35°C. In both species, root temperature did not affect water potentials of the expanded leaf blade or the growing region despite marked changes in Lp. Extreme temperatures greatly decreased ion flux, particularly K+ and NO3, to the xylem of detached roots of both species. Removing external K+ did not alter short-term K+ flux to the xylem in sorghum but strongly inhibited flux at high temperature in barley, indicating differences in the sites of temperature effects. Leaf growth responses to root temperature, although apparently “uncoupled” from water transport properties, were correlated with ion fluxes. Studies of putative root messengers must take into account the possible role of ions.  相似文献   

8.
In barley seedlings (Hordeum vulgare L.) during two days after irradiation of shoots with UV-B (0.5 W/m2, 6 h), the rate of elongation of primary roots decreased 2–3 times compared to that in control plants. The modulus of elasticity of roots (ε) increased at most twofold in 12 h after the onset of irradiation; the hydraulic conductivity (L p) diminished by a factor of two in 12 h, and the root osmotic pressure gradually decreased by 0.08 MPa in 24 h. Changes in ε and L p were shown to be related to oxidative stress in growing roots, which was evidenced from the increase in H2O2 level up to 15-fold increase in 6 h and in activity of guaiacol peroxidase (3.5-fold in 12 h). After 48 h, the characteristics of oxidative metabolism and root characteristics ε and L p became identical in untreated and treated plants. On the third day, the rate of root growth in treated plants reached its initial value. It is concluded that the main causes of retardation of root growth under these conditions were as follows: the increase in cell wall rigidity related to formation of oxidative cross-links in the apoplast and the decrease in root osmotic pressure due to limited transport of assimilates from irradiated leaves. After the intensity of UV-B irradiation applied to shoots was enhanced (1.6 W/m2, 4 h), another physiological status of roots was observed on the 2nd day characterized by twofold increase in L p, tenfold decreased root elongation rate, and by a progressing increase of root diameter in growing roots. The comparison of root responses induced by irradiation of shoots with the root responses to sodium salicylate and ABA suggests that both agents might participate in the transmission of signals from irradiated leaves to roots.  相似文献   

9.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

10.
Anaerobic induction of alanine aminotransferase in barley root tissue   总被引:14,自引:6,他引:8       下载免费PDF全文
Good AG  Crosby WL 《Plant physiology》1989,90(4):1305-1309
Alanine aminotransferase, otherwise called glutamate-pyruvate aminotransferase (GPT), activity increases up to fourfold during several days of anaerobic induction in barley (Hordeum vulgare L.) roots, reaching a maximum activity of 13 international units per gram fresh weight. This increase in activity paralleled the increase in alcohol dehydrogenase activity in the same root tissue. Upon return to aerobic conditions, the induced GPT activity declined with an apparent half-life of 2 days. The isozyme profile of GPT in barley root tissue comprised one band of activity; in maize there were three bands of activity, the bands with greater mobility had much lower activity. Native polyacrylamide gel electrophoresis indicated that the induction of GPT activity results from an increase in the level of activity of these bands; no other activities were detected. When root tissue was induced under different levels of hypoxia (0%, 2%, 5%, and 21% O2), changes in GPT activity were found to increase with lower levels of oxygen. Comparisons of GPT induction in barley, maize (Zea mays), rye, (Secale cereale) and wheat (Triticum aestivum) indicate that this enzyme is induced in the root tissue of all of these cereals; however, anaerobic root conditions do not result in the induction of GPT activity in leaf tissue. The dependence of GPT induction on high levels of nitrate in the media was tested by comparing activity levels in Hoagland solution and a nitrate-free nutrient solution. GPT activity was induced to similar levels under both conditions. These results indicate that alanine aminotransferase shows a very similar pattern of induction to alcohol dehydrogenase in barley root tissue and may be important in anaerobic glycolysis.  相似文献   

11.
The effects of Cu2+, Zn2+, Cd2+ and Pb2+ on growth and the biochemical characteristics of photosynthesis were more expressed in barley (Hordeum vulgare L.) than in maize (Zea mays L.) seedlings. The barley and maize seedlings exhibited retardation in shoot and root growth after exposure of Cu2+, Cd2+ and Pb2+. The Zn2+ions practically did not influence these characteristics. The total protein content of barley and maize roots declined with an increase in heavy metal ion concentrations. The protein content of barley shoots was only slighly decreased with an increase in heavy metal ion concentrations, but the protein content in maize shoots was increased under the same conditions. The chlorophyll content was decreased in barley shoots and increased in maize. The ribulose-l,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activities were decreased drastically by Cu2+, Cd2+ and Pb2+ in thein vivo experiments. The tested heavy metal ions affect photosynthesis probably mainly by inhibition of these key carboxylating enzymes: this mechanism was studied in thein vitro experiments.  相似文献   

12.
13.
The ability of maize (corn, Zea mays L.) to support bacterial nitrogen fixation in or on maize roots has been increased, through screening and selection. Isotopic N fixed from 15N2 was found on the roots. The nitrogen-fixing association was found in germplasm from tropical maize, but this activity can be transferred to maize currently used in midwestern United States agriculture.  相似文献   

14.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

15.
Long noncoding RNAs (lncRNAs) act important roles in a wide range of biological processes. The regulatory roles of lncRNAs are still poorly understood. One of the major problems of limiting plant productivity is the salinity in the worldwide that barley (Hordeum vulgare L.) seems to be relatively well adapted to salinity environments. The aim of this study is the investigation of lncRNAs’ expression levels on four barley genotypes (Hasat, Beysehir 99, Konevi 98 and Tarm 92) to 150 mM salt stress application during 3 days germination. Grains were placed randomly in petri dishes containing filter paper soaked in (a) only H2O (control), (b) 150 mM NaCl for 72 h. RNA extraction were carried out using TriPure® reagent from root and shoot samples obtained after 150 mM salt treatment. Expression levels of CNT0018772 and CNT0031477 were determined by qPCR. Expression analysis demonstrated salinity effected expression levels of CNT0018772 and CNT0031477 on roots and shoots during germination. The expression levels of CNT0018772 for 150 mM salt applied groups were down-regulated raged between (log2–0.52 and–35.65) compared controls on roots and shoot. The expression levels of CNT0031477 in 150 mM salt applied groups were also down-regulated ranged between (log2–10.40 and 33.59) compared controls on roots and shoot except for Tarm 92 variety. On the contrary, expression levels of CNT0031477 were up-regulated on root and shoot of Tarm 92. Comparison of CNT0018772 and CNT0031477 expression levels on roots, there was no significant difference between barley varieties compared to controls (p > 0.05). However, it was found there was statistically significant difference between 150 mM salt treatment and control groups for CNT0031477 expression levels (p < 0.05). It was determined Konevi 98 shoot control expression level was statistically higher than Tarm 92 shoot control. This is the first report about the lncRNAs expression levels of barley under salinity.  相似文献   

16.
Roots of decapitated maize seedlings (Zea mays L.) were exposed for 12 hours to 1.0 millimolar KNO3 (98.5 atom per cent 15N) in the presence and absence (control) of 0.1 millimolar p-fluorophenylalanine (FPA), an analog of the amino acid phenylalanine. FPA decreased nitrate uptake but had little effect on potassium uptake. In contrast, accumulation of both ions in the xylem exudate was greatly restricted. The proportion of reduced 15N-nitrogen that was translocated at each time was also restricted by FPA. These observations are interpreted as indicating that synthesis of functional protein(s) is required for nitrate uptake and for transport of potassium, nitrate, and reduced-15N from xylem parenchyma cells into xylem elements. The effect of FPA on nitrate reduction is less clear. Initially, FPA limited nitrate reduction more than nitrate uptake, but by 8 hours the cumulative reduction of entering nitrate was similar (~35%) in both control and FPA-treated roots. A relationship between nitrate uptake and nitrate reduction is implied. It is suggested that nitrate influx regulates the proportion of nitrate reductase in the active state, and thereby regulates concurrent nitrate reduction in decapitated maize seedlings.  相似文献   

17.
The influence of 15 hydroxy-benzoic acids upon active inorganic phosphate absorption by barley roots was examined. For each compound an inhibition constant (ki) was determined, i.e. the concentration of compound required to bring about a 50% inhibition of absorption. The ki values of the benzoic acids were strongly correlated with their octanol—water partition coefficients and their pKa values. This suggests that the inhibition of normal membrane functions, brought about by benzoic acids, results from a generalized increase in cell membrane permeability. Salicylate derivatives were generally more inhibitory than would be predicted from their partition coefficients; their pronounced toxicity probably arises from structural impediments to their detoxication.  相似文献   

18.
Aslam M  Huffaker RC 《Plant physiology》1982,70(4):1009-1013
In vivo NO3 reduction in roots and shoots of intact barley (Hordeum vulgare L. var Numar) seedlings was estimated in light and darkness. Seedlings were placed in darkness for 24 hours to make them carbohydrate-deficient. During darkness, the leaves lost 75% of their soluble carbohydrates, whereas the roots lost only 15%. Detached leaves from these plants reduced only 7% of the NO3 absorbed in darkness. By contrast, detached roots from the seedlings reduced the same proportion of absorbed NO3, as did roots from normal light-grown plants. The rate of NO3 reduction in the roots accounted for that found in the intact dark-treated carbohydrate-deficient seedlings. The rates of NO3 reduction in roots of intact plants were the same for approximately 12 hours, both in light and darkness, after which the NO3 reduction rate in roots of plants placed in darkness slowly declined. In the dark, approximately 40% of the NO3 reduction occurred in the roots, whereas in light only 20% of the total NO3 reduction occurred in roots. A lesser proportion was reduced in roots because the leaves reduced more nitrate in light than in darkness.  相似文献   

19.
Interspecific interactions and soil nitrogen supply levels affect intercropping productivity. We hypothesized that interspecific competition can be alleviated by increasing N application rate and yield advantage can be obtained in competitive systems. A field experiment was conducted in Wuwei, Gansu province in 2007 and 2008 to study intercropping of faba bean/maize, wheat/maize, barley/maize and the corresponding monocultures of faba bean (Vicia faba L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) with N application rates of 0, 75, 150, 225 and 300 kg N ha?1. Total land equivalent ratios (TLER) were 1.22 for faba bean/maize, 1.16 for wheat/maize, and 1.13 for barley/maize intercropping over the 2-year study period. Maize was overyielding when intercropped with faba bean, but underyielding when intercropped with wheat or barley according to partial land equivalent ratios (PLER) based on grain yields of individual crops in intercropping and sole cropping. There was an interspecific facilitation between intercropped faba bean and maize, and interspecific competition between maize and either wheat or barley. The underyielding of maize was higher when intercropped with barley than with wheat. Fertilizer N alleviated competitive interactions in intercrops with adequate fertilizer N at 225 kg ha?1. Yield advantage of intercropping can be acquired with adequate nitrogen supply, even in an intensive competitive system such as barley/maize intercropping. This is important when using intercropping to develop intensive farming systems with high inputs and high outputs.  相似文献   

20.
To investigate the mechanism of mugineic acid-FeIII uptake by barley roots, plasma membrane fractions were isolated from Fe-deficient barley roots using an aqueous two-phase partition method. Utilizing the plasma membrane vesicles, we developed an assay system for studying mugineic acid-55FeIII binding to the plasma membrane. However, no efficient active transport of mugineic acid-55FeIII into the plasma membrane vesicle was detected, because of large amount of non-specific adsorption of 55FeIII onto the vesicle. And the adsorption could be decreased by adding excess amount of free mugineic acid to the assay system. From the results it is speculated that an excess of free mugineic acids is necessary in the medium for effective uptake of mugineic acid-FeIII by Fe-deficient barley roots. Support for this speculation came from a multi-compartment transport box experiment with excised roots of Fe-deficient barley.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - MA mugineic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号