首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The thermotropic behavior of multilamellar vesicles (MLV) composed of different mole fractions of various marine sterols and 1-stearoyl-2-oleoyl phosphatidylcholine (SOPC) was examined by differential scanning calorimetry (DSC), and was compared to pure SOPC as well as their mixtures with cholesterol. The marine sterols investigated were capable of interacting with the phospholipid bilayers. Upon addition of marine sterols, the apparent transition temperature (Tm) of SOPC decreased significantly. Desmosterol (cholesta-5,24-dien-3 beta-ol) had the least interaction with SOPC, as reflected by the larger delta H values of its mixtures with the phospholipid. Fucosterol (24-ethylcholesta-5,24(28)-dien-3 beta-ol) showed a non-linear trend as the mole percent of the sterol increased. Mixtures of sutinasterol (24R-24-ethyl-26,26-dimethylcholesta-7,25(27)-dien-3 beta-ol) with SOPC had similar enthalpy values to cholesterol. The shape of the SOPC/marine sterol endotherm and their delta H values were not identical when liposomes prepared by dialysis were compared to MLV.  相似文献   

2.
The sterol compositions of 14 species of marine diatoms were determined by gas chromatography and gas chromatography-mass spectrometry. A variety of sterol profiles were found. The sterols 24-methylcholesta-5,22E-dien-3β-ol, cholest-5-en-3β-ol, and 24-methylcholesta-5,24(28)-dien-3β-ol, previously described as the most common sterols found in diatoms, were major sterols in only a few of the species. In light of this and other recent data, it is clear that these three sterols are not typical constituents of many diatom species. Most of the centric species examined had 24-methylcholesta-5,24(28)-dien-3β-ol and 24-methylcholest-5-en-3β-ol as two of their major sterols. The exception was Rhizosolenia setigera, which possessed cholesta-5,24-dien-3β-ol as its single major sterol. In contrast to the centric species, the pennate diatoms examined did not have any particular sterols common to most species. Minor levels ofΔ7-sterols, rarely found in large amounts in diatoms, were found in four species. C29sterols were found in many species; seven contained 24-ethylcholest-5-en-3β-ol and three contained 24-ethylcholesta-5,22E-dien-3β-ol, reinforcing previous suggestions that C29 sterols are not restricted to higher plants and macroalgae. 24-Ethylcholesta-5,22E-dien-3β-ol may prove to be useful for taxonomy of the genus Amphora and the order Thalassiophysales. A major sterol of Fragilaria pinnata was the uncommon algal sterol 23,24-dimethylcholesta-5,22E-dien-3β-ol. Cholesta-5,24-dien-3β-ol was the only sterol found in the culture of Nitzschia closterium. This differed from previous reports of 24-methylcholesta-5,22E-dien-3β-ol as the single major sterol in N. closterium. Two C28 sterols possessing an unusual side chain were found in Thalassi-onema nitzschioides, a C28:2 sterol (16%) and a C28:1 sterol in lower abundance (2.5%), which may be 23-methylcholesta-5,22E-dien-3β-ol and 23-methyl-5α-cholest-22E-en-3β-ol, respectively. The species Cylindrotheca fusiformis, T. nitzschioides, and Skeletonema sp. may be useful as direct sources of cholesterol in mariculture feeds due to their moderate to high content of this sterol.  相似文献   

3.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

4.
M Kobayashi  H Mitsuhashi 《Steroids》1975,26(5):605-624
The sterols of the scallop, Patinopecten yessoensis Jay, was found to contain over 20 components. The major components were delta5-sterols, and lesser amount of ring-saturated sterols were also present. Biogenetically unusual C26 sterols (24-norcholesta-5,22-dien-3beta-ol and 24-norcholest-22-en-3beta-ol) and 24(28)-cis-24-propylidenecholest-5-en-3beta-ol (29-methylisofucosterol), 22-trans-27-nor-(24S)-24-methylcholesta-5,22-dien-3beta-ol (occelasterol), and a new sterol, 22-trans-27-nor-(24S)-24-methylcholest-22-en-3beta-ol (patinosterol), were isolated and their structures were confirmed. Occurrence of 22-trans-(24S)-24-methylcholesta-5,22-dien-3beta-ol (24-epibrassicasterol) was confirmed. 22-cis-Cholesta-5,22-dien-3beta-ol was not found.  相似文献   

5.
The sterol mixture of the southern Japan's soft coral, Sarcophyton glaucum, was found to contain 11 sterols including a novel sterol, 23,24 xi-dimethylcholesta-5,22-dien-3 beta-ol and a new diunsaturated C29 sterol. 22,23-Dihydrobrassicasterol and gorgosterol were the major components in free- and esterified sterols respectively. Brassicasterol was found in S. glaucum, in contrast to the ubiquity of 24-epibrassicasterol in the marine invertebrates in the northern districts. The new sterol (sarcosterol) was isolated; its structure as 23 xi, 24 xi-dimethylcholesta-5, 17(20)-trans-dien-3 beta-ol was based on spectra evidence and comparison with cholesta-5, 17(20)-trans-dien-3 beta-ol.  相似文献   

6.
A trisulfated derivative of 24,25,26,26-tetramethyl-5 alpha-cholest-23E-ene-2 alpha, 3 beta, 6 alpha-triol (sokotrasterol sulfate) has been isolated from the sponge Halichondriidae gen. sp., collected near Sokotra Island (Arabian Sea), and its structure has been elucidated. The side chain of the new steroid involves a "normal" alkylation at C-24 and the unprecedented addition of two extra methyl groups at C-26 and one extra methyl group at C-25. A free sterol fraction contained only 24-isopropyl-5-cholesten-3 beta-ol and 24-isopropyl-5, 22E-cholestadien-3 beta-ol. 24-Isopropyl-5, 22E-cholestadien-3 beta-ol as sole monohydroxy sterol and halistanol sulfate as major polyhydroxylated steroid derivative have been detected in Halichondria sp., a Madagascar sponge.  相似文献   

7.
The sterol fraction from the marine worm Linneus torquatus Coe (phylum Nemertini, class Anopla, family Lineidae) has been isolated, separated by HPLC and preparative TLC on AgNO3-impregnated silica gel, and sterols identified using GC, GC-MS and NMR spectroscopy. It was shown that the fraction contains at least 12 sterols belonging mainly to Δ5,22, Δ5,24(28) and Δ5 series. The major sterol components were 24-methylcholesta-5,24(28)-dien-3β-ol, cholesta-5,22E-dien-3β-ol, 24-nor-cholesta-5,22-dien-3β-ol and cholesterol.  相似文献   

8.
Sterols characterized by an allylic hydroxyl group in the side chain, such as stigmasta-5,28-diene-3 beta, 24 epsilon-diol (1), cholesta-5,23-diene-3 beta,25-diol (2) and cholesta-5,25-diene-3 beta,24 epsilon-diol (3), have been identified several times in various marine algae. Their origin was considered as doubtful: they could have been bona fide constituents of the alga, or be artifacts caused by autoxidation during the isolation process. We have shown that the dihydroxy steroids 2 and 3 can indeed be produced by the autoxidation of cholesta-5,24-dien-3 beta-ol (desmosterol) (5), but that they are nevertheless present in the taxonomic significance.  相似文献   

9.
Four sterols, isolated from the scallop Pacopecten magellanicus have been identified as 24-nor-5alpha-cholest-22-en-3beta-ol; 24-norcholest-5-en-3beta-ol; 5alpha-cholest-22-en-3beta-ol; and (E) -24-propylidenecholest-5-en-3beta-ol. These bring to seventeen the total number of sterols identified in this marine mollusc. A fifth newly detected sterol, closely similar in its mass spectrometric properties is 22-cis and trans-cholesta-5, 22-dien-3beta-ol, was clearly distinguished from these by its shorter retention time by GLC.  相似文献   

10.
Sterols, a group of stable lipid compounds, are often used as biomarkers in marine biogeochemical studies to indicate sources of organic matter. In this study, sterols in 13 species of major bloom-forming algae in China, which belong to Dinophyceae, Bacillariophyceae, Ulvophyceae, and Pelagophyceae, were analyzed with gas chromatography-mass spectrometry (GC–MS) to test their feasibility in representing different types of harmful algal blooms (HABs). It was found that (24Z)-stigmasta-5,24-dien-3β-ol (28-isofucosterol) was a major sterol component in green-tide forming macroalga Ulva prolifera. In bloom-forming dinoflagellates Alexandrium spp., Prorocentrum micans and Scrippsiella trochoidea, (22E)-4α,23-dimethyl-5α-ergost-22-en-3β-ol (dinosterol) was detected in addition to cholest-5-en-3β-ol (cholesterol), (22E)-ergosta-5,22-dien-3β-ol, (22E)-stigmasta-5,22-dien-3β-ol and other minor sterol components. In brown-tide forming pelagophyte Aureococcus anophagefferens, (24E)-24-propylcholesta-5,24-dien-3β-ol ((24E)-24-propylidenecholesterol) and (24Z)-24-propylcholesta-5,24-dien-3β-ol ((24Z)-24-propylidenecholesterol) were detected together with cholesterol, (22E)-stigmasta-5,22-dien-3β-ol, stigmast-5-en-3β-ol and campest-5-en-3β-ol. Among the selected bloom-forming diatoms, Chaetoceros sp. and Pseudo-nitzschia spp. only produced cholesterol, while Cylindrotheca closterium produced solely (22E)-ergosta-5,22-dien-3β-ol. Sterol content in four bloom-forming algal species correlates well with their biomass or abundance. It's proposed that 28-isofucosterol could serve as a promising biomarker for green algae in green-tide studies. Dinosterol and (24Z)-24-propylidenecholesterol can be used as potential biomarkers to represent bloom-forming dinoflagellates and pelagophytes, while (22E)-ergosta-5,22-dien-3β-ol is not a good indicator for diatoms.  相似文献   

11.
Giner JL  Gunasekera SP  Pomponi SA 《Steroids》1999,64(12):820-824
The marine sponge Petrosia weinbergi was found to contain isofucosterol and clionasterol as its major sterols. The rare cyclopropyl sterol (24S,28S)-24,28-methylenestigmast-5-en-3beta-ol, previously detected as only 0.07% of the total sterols of a pelagophytic alga Pulvinaria sp., made up 6.6% of the total sterols. These sterols are believed to be the biosynthetic precursors of the antiviral orthoesterols and weinbersterols found in the same sponge. Based on the side chains of the isolated sterols, the absolute configurations of the antiviral steroid side chains are assigned to be (24R,28S)- for orthoesterol B, (24R)- for orthoesterol C, and (24S,28S)- for weinbersterols A and B.  相似文献   

12.
河南固始早石炭世杨山组植物群   总被引:2,自引:0,他引:2  
系统描述了扬山组植物18属25种,其中以石松类及种子蕨和真蕨纲为主,仅少数属楔叶纲;石松类中发现不少叶座较小,叶痕相对较大的鳞木类植物,颇似华夏植物群中的鳞木类;首次报道了我国发现的古芦木孢囊穗.据对植物群综合分析,杨山组的时代为早石炭世中晚期.  相似文献   

13.
The principal sterol of the marine diatom Phaedactylum tricornutum was identified as (24S)-24-methylcholesta-5,22E-dien-3β-ol. Two deuterium atoms were incorporated into this sterol when the diatom was cultured in the presence of [CD3]methionine indicating a 24-methylene intermediate.  相似文献   

14.
The diatom family Rhaphoneidaceae is characterized by high generic diversity and low species diversity with most genera known to have long stratigraphic ranges. The genera within this family are neritic marine, and mostly epipsammic. A new modern and epipsammic genus, Meloneis gen. nov., is described herein and is compared to all genera within Rhaphoneidaceae and especially to Rhaphoneis Ehrenberg s.l. Within Meloneis three new species and one variety are distinguished and described herein: M. mimallis sp. nov., M. mimallis var. zephyria var. nov., M. akytos sp. nov., and M. gorgis sp. nov.  相似文献   

15.
David Nes W  Nichols SD 《Phytochemistry》2006,67(16):1716-1721
The Zygomycetes fungus Mortierella alpina was cultured to growth arrest to assess the phytosterol biosynthesis pathway in a less-advanced fungus. The mycelium was found to produce 13 sterols, but no ergosterol. The sterol fractions were purified to homogeneity by HPLC and their identifies determined by a combination of GC-MS and 1H NMR spectroscopy. The principal sterol of the mycelium was cholesta-5, 24-dienol (desmosterol) (83%), with lesser amounts of 24beta-methyl-cholesta-5,25(27)-dienol (codisterol) (2%), 24-methyldesmosterol (6%), 24(28)-methylene cholesterol (3%) and lanosterol (3%) and several other minor compounds (3%). The total sterol accounted for approximately 0.07% of the mycelial dry wt. Mycelium fed methionine-methyl-2H3 for 6 days, generated 3 2H-24-methyl(ene) sterols, [C28-2H2]24(28)-methylenecholesterol, [C28-2H3]24-methylcholesta-5,24-dienol and [C28-2H3]24beta-methyl-cholesta-5,25(27)-dienol. The formation of the 24-methyl sterols seems to be catalyzed by the direct methylation of a common Delta24-acceptor sterol thereby bypassing the intermediacy of an isomerization step for rearrangement of the Delta24(28)-bond to Delta25(25)-position as operates in Ascomycetes fungi and all plants.  相似文献   

16.
Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application   总被引:3,自引:0,他引:3  
Dunstan GA  Brown MR  Volkman JK 《Phytochemistry》2005,66(21):2557-2570
The biochemical compositions of seven strains of marine cryptomonad and a rhodophyte were determined in logarithmic phase batch (1.4 L flask) and semi-continuous (10 L carboy) culture. Lipid ranged from 13% to 28%, protein ranged from 53% to 68%, and carbohydrate ranged from 9% to 24% of the organic weight. The major lipid classes in the species examined were polar lipids (78-88% of total lipid). The major sterol in the Cryptophyceae and the Rhodophyceae was 24-methylcholesta-5,22E-dien-3beta-ol (62-99% of total sterols); which is also the major sterol in some diatoms and haptophytes. Smaller proportions of cholest-5-en-3beta-ol (1-17.7%) were also found in the Cryptophyceae. Most cryptomonads contained high proportions of the n-3 polyunsaturated fatty acids (PUFA), 18:3n-3 (20.7-29.9% of the total fatty acids), 18:4n-3 (12.5-30.2%), 20:5n-3 (7.6-13.2%) and 22:6n-3 (6.4-10.8%). However, the blue-green cryptomonad Chroomonas placoidea was characterized by a low proportion of 22:6n-3 (0.2% of total fatty acids), and a significant proportion of 22:5n-6 (4.5%), and the presence of 24-ethylcholesta-5,22E-dien-3beta-ol (35.5% of total sterols). The fatty acid composition of the rhodophyte Rhodosorus sp. was similar to those of the Cryptophyceae except for lower proportions of 18:4n-3 and lack of C21 and C22 PUFA. It is postulated that the primary endosymbiosis of a photosynthetic n-3 C18 PUFA-producing prokaryote and a eukaryotic host capable of chain elongation and desaturation of exogenous PUFA, resulted in the Rhodophyceae capable of producing n-3 C20 PUFA. The secondary endosymbiosis of a photosynthetic n-3 C20 PUFA-producing eukaryote (such as a Rhodosorus sp. like-rhodophyte) and a eukaryotic host capable of further chain elongation and desaturation, resulted in the Cryptophyceae being capable of producing n-3 C20 and C22 PUFA de novo. Selected isolates were examined further in feeding trials with juvenile Pacific oysters (Crassostrea gigas). Rhodomonas salina CS-24(containing elevated 22:6n-3) produced high growth rates in oysters; equivalent to the microalga commonly used in aquaculture, Isochrysis sp. (T.ISO).  相似文献   

17.
Total, free and conjugated forms (steryl esters, steryl glycosides and acyl steryl glycosides) of sterols from three microalgae that are extensively used in mariculture (Tetraselmis chuii, Nannochloropsis salina and Skeletonema costatum) were examined. The results revealed that cholesterol is the only common fraction detected in all investigated species and distributed in free and all conjugated forms. However, the total sterol content of T. chuii was about 325 microg/g dry wt, most of it was concentrated amongst 24-methylcholesta-5,24-diene-3beta-ol and 24-methylcholest-5-en-3beta-ol. On the other hand, the majority of the fractions were distributed in the free form. The total sterol content of N. salina was about 180 microg/g dry wt, cholesterol was the major fraction that was detected. Nevertheless, the dominant distribution forms were esterified. While in S. costatum, the total sterol content was 76 microg/g dry wt, approximately most fractions are quantitatively alike and dominated in the free form. Furthermore, our study shows clearly that most sterols are not distributed regularly within each form, a result that encouraged us to suggest a distribution of specific sterol fraction as a free or conjugated can be used as a serving tool in chemotaxonomic studies.  相似文献   

18.
The paraphyletic diatom genus Nitzschia comprises over 1000 morphologically distinct pennate taxa, known from the benthos and plankton of freshwater, brackish, and marine environments. The principal diagnostic characters for delimitation of Nitzschia species include valve shape, the position and structure of the raphe, presence/absence and shape of the proximal raphe endings and terminal raphe fissures, areola structure, and specific morphometric features such as cell size, and stria and fibula density. In this study, we isolated 12 diatom strains into culture from samples collected at the surface or greater depths of the southeastern Adriatic Sea. Morphological analyses included LM, SEM, and TEM observations, which, along with specific morphometric features, allowed us to distinguish three new Nitzschia species. These findings were congruent with the results of phylogenetic analyses performed on nuclear‐encoded SSU (18S) rDNA and chloroplast‐encoded rbcL and psbC genes. One of the new species (Nitzschia dalmatica sp. nov.) formed a lineage within a clade of Bacillariaceae containing members of the Nitzschia sect. Dubiae, which was sister to Psammodictyon. A second lineage was part of a novel clade that is significantly distinct from other Nitzschia species sequenced so far and includes Nitzschia adhaerens sp. nov. and N. cf. adhaerens. A further new species was found, Nitzschia inordinata sp. nov., which appeared as the sister group to the N. adhaerens clade and the conopeoid Nitzschia species in our phylogenetic trees. Our findings contribute to the overall diversity of genus Nitzschia, especially in identifying some deep branches within the Bacillariaceae, and highlight under‐scoring of this genus in marine plankton.  相似文献   

19.
The rates of cholesterol biosynthesis in isolated rat hepatocytes were determined by using a method based on measurement of the rate of formation of desmosterol (cholesta-5,24-dien-3beta-ol), which accumulates during inhibition of cholesterogenesis by the drug triparanol. Incubation of cells from normal or 24h-starved animals in a medium containing albumin, glucose, amino acids and acetate as the only organic constituents led to an accelerating rate of sterol formation during the earlier stages of a 6h incubation period. The contribution of exogenously added acetate (initial concentration 3.34mm) to sterol synthesis in both types of cells reached an early maximum and then continually declined. Exogenously added pyruvate and lactate were more efficient sources of sterol carbon than was acetate. Exogenous glucose even at relatively high concentrations (11.1mm) was incapable of providing more than 6% of the total sterol carbon. Although the proportion of total sterol carbon supplied from exogenous acetate increased with increasing concentrations of the extracellular substrate, the rates of total sterol synthesis in both types of cell remained unchanged. Similar observations were made when lactate or pyruvate was the cholesterogenic precursor in normal cells. These studies suggest that, although exogenous substrates were capable of expanding an intracellular pool of cholesterol precursor, the normal supply of intermediary metabolites was not rate-limiting for cholesterogenesis.  相似文献   

20.
A new fossil marine diatom resting spore morphogenus, Vallodiscus Suto gen. nov., is described using samples from Deep Sea Drilling Project Site 338 in the Norwegian Sea, Sites 436 and 438 in the north‐west Pacific Ocean and the onland Newport Beach Section, California. Vallodiscus is characterized by a single ring of veins along the epivalve margin and a hypovalve covered with circular depressions of several sizes with gentle elevation. The morpho‐genus bears three new species and one new combination: Vallodiscus simplexus Suto sp. nov., Vallodiscus complexus Suto sp. nov., Vallodiscus lanceolatus Suto sp. nov. and Vallodiscus chinchae (Mereschkowsky) Suto comb. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号