首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
DNA methylation and histone H4 acetylation play a role in gene regulation by modulating the structure of the chromatin. Recently, these two epigenetic modifications have dynamically and physically been linked. Evidence suggests that both modifications are involved in regulating imprinted genes - a subset of genes whose expression depends on their parental origin. Using immunoprecipitation assays, we investigate the relationship between DNA methylation, histone H4 acetylation and gene expression in the well-characterised imprinted Igf2-H19 domain on mouse chromosome 7. A systematic regional analysis of the acetylation status of the domain shows that parental-specific differences in acetylation of the core histone H4 are present in the promoter regions of both Igf2 and H19 genes, with the expressed alleles being more acetylated than the silent alleles. A correlation between DNA methylation, histone hypoacetylation and gene repression is evident only at the promoter region of the H19 gene. Treatment with trichostatin A, a specific inhibitor of histone deacetylase, reduces the expression of the active maternal H19 allele and this can be correlated with regional changes in acetylation within the upstream regulatory domain. The data suggest that histone H4 acetylation and DNA methylation have distinct functions on the maternal and paternal Igf2-H19 domains.  相似文献   

3.
4.
5.
Imprinting is an epigenetically controlled form of gene regulation in which the expression of a gene is based on its parent of origin. This epigenetic regulation is likely to involve allele-specific DNA or histone modifications. The relative abundance of eight different histone modifications was tested at various regions in several imprinted maize (Zea mays) genes using a chromatin immunoprecipitation protocol coupled with quantitative allele-specific single nucleotide polymorphism assays. Histone H3 lysine-27 di- and tri-methylation are paternally enriched at the imprinted loci Mez1, ZmFie1 and Nrp1. In contrast, acetylation of histones H3 and H4 and H3K4 dimethylation are enriched at the maternal alleles of these genes. Di- and tri-methylation of H3 lysine-9, which is generally associated with constitutively silenced chromatin, was not enriched at either allele of imprinted loci. These patterns of enrichment were specific to tissues that exhibit imprinting. In addition, the enrichment of these modifications was dependent upon the parental origin of an allele and not sequence differences between the alleles, as demonstrated by reciprocal crosses. This study presents a detailed view of the chromatin modifications that are associated with the maternal and paternal alleles at imprinted loci and provides evidence for common histone modifications at multiple imprinted loci.  相似文献   

6.
7.
8.
Allele‐specific association of histone modification is observed at the regulatory region of imprinted genes and has been suggested to work as an epigenetic marker for monoallelic gene expression, along with the allelic CpG methylation of DNA. Although the parent‐origin‐specific epigenetic status in imprinted genes is thought to be established during preimplantation development, little is known about the allelic specificity of histone modifications during this period because of the limited volume of material available for analysis. In this study, we first revealed the allelic enrichment of histone modifications and variant histones at the imprinting control regions (ICRs) of four‐cell to blastocyst stage preimplantation embryos by using carrier chromatin immunoprecipitation and sequence polymorphism analysis of immunoprecipitated DNA. We found relative enrichment of histone H3 lysine 9 dimethylation at the imprinted alleles of ICRs and obtained the results suggesting that histone modifications at ICRs are established during a late preimplantation stage. genesis, 47:611–616, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
12.
13.
Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states.  相似文献   

14.
15.
Dlk1 and Gtl2 are reciprocally expressed imprinted genes located on mouse chromosome 12. The Dlk1-Gtl2 locus carries three differentially methylated regions (DMRs), which are methylated only on the paternal allele. Of these, the intergenic (IG) DMR, located 12 kb upstream of Gtl2, is required for proper imprinting of linked genes on the maternal chromosome, while the Gtl2 DMR, located across the promoter of the Gtl2 gene, is implicated in imprinting on both parental chromosomes. In addition to DNA methylation, modification of histone proteins is also an important regulator of imprinted gene expression. Chromatin immunoprecipitation was therefore used to examine the pattern of histone modifications across the IG and Gtl2 DMRs. The data show maternal-specific histone acetylation at the Gtl2 DMR, but not at the IG DMR. In contrast, only low levels of histone methylation were observed throughout the region, and there was no difference between the two parental alleles. An existing mouse line carrying a deletion/insertion upstream of Gtl2 is unable to imprint the Dlk1-Gtl2 locus properly and demonstrates loss of allele-specific methylation at the Gtl2 DMR. Further analysis of these animals now shows that the loss of allele-specific methylation is accompanied by increased paternal histone acetylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern. These data indicate that interactions between DNA methylation and histone acetylation are involved in regulating the imprinting of the Dlk1-Gtl2 locus.  相似文献   

16.
The distal serpin subcluster contains genes encoding alpha1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL) and the KAL-like protein, which are expressed in hepatocytes, but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified 12 Dnase I-hypersensitive sites (DHSs) that were distributed throughout the entire subcluster, with the promoters of expressed genes accessible to restriction enzyme digestion. In astrocytes, only six DHSs were located exclusively in the 5' flanking region of the act gene, with its promoter also accessible to restriction enzyme digestion. The acetylation of histone H3 and H4 was found throughout the subcluster in both cell types but this acetylation did not correlate with the expression pattern of these serpin genes. Analysis of histone modifications at the promoters of the act and pci genes revealed that methylation of histone H3 on lysine 4 correlated with their expression pattern in both cell types. In addition, inhibition of methyltransferase activity resulted in suppression of ACT and PCI mRNA expression. We propose that lysine 4 methylation of histone H3 correlates with the tissue-specific expression pattern of these serpin genes.  相似文献   

17.
18.
19.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. Disruption of normal imprinting leads to abnormal embryogenesis, certain inherited diseases, and is associated with various cancers. In the context of screening for the gene(s) responsible for the alteration of phenotype in cyclophilin A knockdown (CypA-KD) P19 cells, we observed a silent paternally expressed gene, Peg3. Treatment of CypA-KD P19 cells with the DNA demethylating agent 5-aza-dC reversed the silencing of Peg3 biallelically. Genomic bisulfite sequencing and methylation-specific PCR revealed DNA hypermethylation in CypA-KD P19 cells, as the normally unmethylated paternal allele acquired methylation that resulted in biallelic methylation of Peg3. Chromatin immunoprecipitation assays indicated a loss of acetylation and a gain of lysine 9 trimethylation in histone 3, as well as enhanced DNA methyltransferase 1 and MBD2 binding on the cytosine-guanine dinucleotide (CpG) islands of Peg3. Our results indicate that DNA hypermethylation on the paternal allele and allele-specific acquisition of histone methylation leads to silencing of Peg3 in CypA-KD P19 cells. This study is the first demonstration of the epigenetic function of CypA in protecting the paternal allele of Peg3 from DNA methylation and inactive histone modifications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号