首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging and glycolytic inhibition (GI) are known to alter intracellular calcium ion (Ca(i)(2+)) handling in cardiac myocytes, causing early afterpotentials (EADs) and delayed afterpotentials. We hypothesized that aging and GI interact synergistically in intact hearts to generate EADs and triggered activity leading to atrial fibrillation (AF). We studied isolated and Langendorff-perfused hearts of young (age 3-5 mo, N = 8) and old (age 27-29 mo, N = 14) rats subjected to GI (0 glucose + 10 mmol/l pyruvate). Epicardial atrial activation maps were constructed using optical action potentials, while simultaneously monitoring Ca(i)(2+) by means of dual-voltage and calcium-sensitive fluorescent dyes. During GI, spontaneous AF occurred in 13 of 14 old but in no young rats. AF was initiated by EAD-induced triggered activity at the left atrial pulmonary vein junction (LA-PVJ). The triggered activity initially propagated as single wave front, but within 1 s degenerated into multiple wavelets. The EADs and triggered activity in the old atria were associated with significantly elevated diastolic Ca(i)(2+) levels at the LA-PVJ, where the time constant tau of the Ca(i)(2+) transient decline and action potential duration were significantly (P < 0.01) prolonged compared with atrial sites 5 mm away from LA-PVJ. During GI and rapid atrial pacing, spatially discordant APD and Ca(i)(2+) transient alternans developed in the old but not young atria, leading to AF. Atria in old rats had significantly more fibrotic tissue than atria in young rats. We conclude that GI interacts with the aged and fibrotic atria to amplify Ca(i)(2+) handling abnormalities that facilitate EAD-mediated triggered activity and AF.  相似文献   

2.
Chronic rapid atrial pacing (RAP) leads to changes that perpetuate atrial fibrillation (AF). Chronic atrial dilatation due to mitral regurgitation (MR) also increases AF inducibility, but it is not clear whether the underlying mechanism is similar. Therefore, we have investigated atrial electrophysiology in a canine MR model (mitral valve avulsion, 1 mo) using high-resolution optical mapping and compared it with control dogs and with the canine RAP model (6-8 wk of atrial pacing at 600 beats/min, atrioventricular block, and ventricular pacing at 100 beats/min). At followup, optical action potentials were recorded using a 16 x 16 photodiode array from 2 x 2-cm left atrial (LA) and right atrial (RA) areas in perfused preparations, with pacing electrodes around the field of view to study direction dependency of conduction. Action potential duration at 80% repolarization (APD(80)) was not different between control and MR but was reduced in RAP atria. Conduction velocities during normal pacing were not different between groups. However, the MR LA showed increased conduction heterogeneity during pacing at short cycle lengths and during premature extrastimuli, which frequently caused pronounced regional conduction slowing. Conduction in the MR LA during extrastimulation also displayed a marked dependence on propagation direction. These phenomena were not observed in the MR RA and in control and RAP atria. Thus both models form distinctly different AF substrates; in RAP dogs, the decrease in APD(80) may stabilize reentry. In MR dogs, regional LA conduction slowing and increased directional dependency, allowing unidirectional conduction block and preferential paths of conduction, may account for increased AF inducibility.  相似文献   

3.
Repetitive rapid activities are present in the pulmonary veins (PVs) in dogs with pacing-induced sustained atrial fibrillation (AF). The mechanisms are unclear. We induced sustained (>48 h) AF by rapidly pacing the left atrium (LA) in six dogs. High-density computerized mapping was done in the PVs and atria. Results show repetitive focal activations in all dogs and in 12 of 18 mapped PVs. Activation originated from the middle of the PV and then propagated to the LA and distal PV with conduction blocks. The right atrium (RA) was usually activated by a single large wavefront. Mean AF cycle length in the PVs (left superior, 82 +/- 6 ms; left inferior, 83 +/- 6 ms; right inferior, 83 +/- 4 ms) and LA posterior wall (87 +/- 5 ms) were significantly (P < 0.05) shorter than those in the LA anterior wall (92 +/- 4 ms) and RA (107 +/- 5 ms). PVs in normal dogs did not have focal activations during induced AF. No reentrant wavefronts were demonstrated in the PVs. We conclude that nonreentrant focal activations are present in the PVs in a canine model of pacing-induced sustained AF.  相似文献   

4.
Atrial fibrillation (AF), the most common cardiac arrhythmia seen in general practice, can be promoted by conduction slowing. Cardiac impulse conduction depends on gap junction channels, which are composed of connexins (Cxs). While atrial Cx40 and Cx43 are equally expressed, AF studies have primarily focused on Cx40 reductions. The G60S Cx43 mutant (Cx43(G60S/+)) mouse model of Oculodentodigital dysplasia has a 60% reduction in Cx43 in the atria. Cx43(G60S/+) mice were compared with Cx40-deficient (Cx40(-/-)) mice to determine the role of Cxs in atrial tachycardia/fibrillation (AT/F). Intracardiac electrophysiological studies were done in 6-mo-old male C57BL/6 Cx43(G60S/+) mutant, littermate (Cx43(+/+)), Cx40(-/-), and C57BL/6 wild-type (WT) mice. AT/F induction used an extra stimulus during sinus rhythm, programmed electrical stimulation, or burst pacing (1-ms pulses, 50-Hz, 400-ms train) in the absence and presence of carbachol (CCh). Atrial effective refractory periods did not differ between strains. Cx43(G60S/+) mice were more susceptible to induction of sustained AT/F (duration >2 min, 9 of 12; maximum >35 min) compared with Cx43(+/+) mice (3 of 11; χ(2) = 5.24; P = 0.02). CCh enhanced sustained AT/F susceptibility in WT (from 1 of 12 without, to 7 of 10 with CCh; χ(2) = 8.98; P < 0.01) but not in Cx40(-/-) mice (1 of 13 without vs. 2 of 9 with CCh; χ(2) = 0.95; P = NS). The pattern of epicardial recordings during AT/F in Cx43(G60S/+) mice was left preceding right, with left atrial fractionated activation patterns consistent with clinical observations of AF. In conclusions, while Cx43(G60S/+) mice had severe AT/F, Cx40(-/-) mice were resistant to CCh-induced AT/F.  相似文献   

5.
The potential of chronic nicotine exposure for atrial fibrillation (AF) and atrial flutter (AFL) in hearts with and without chronic myocardial infarction (MI) remains poorly explored. MI was created in dogs by permanent occlusion of the left anterior descending coronary artery, and dogs were administered nicotine (5 mg.kg(-1).day(-1) sc) for 1 mo using osmotic minipumps. High-resolution epicardial (1,792 bipolar electrodes) and endocardial Halo catheters were used to map activation during induced atrial rhythms. Nicotine promoted inducible sustained AFL at a mean cycle length of 134 +/- 10 ms in all MI dogs (n = 6) requiring pacing and electrical shocks for termination. No AFL could be induced in MI dogs (n = 6), control (non-MI) dogs (n = 3) not exposed to nicotine, and dogs with no MI and exposed to nicotine (n = 3). Activation maps during AFL showed a single reentrant wavefront in the right atrium that rotated either clockwise (60%) or counterclockwise (40%) around the crista terminalis and through the isthmus. Ablation of the isthmus prevented the induction of AFL. Nicotine caused a significant (P < 0.01) but highly heterogeneous increase in atrial interstitial fibrosis (2- to 10-fold increase in left and right atria, respectively) in the MI group but only a 2-fold increase in the right atrium in the non-MI group. Nicotine also flattened (P < 0.05) the slope of the epicardial monophasic action potential duration (electrical restitution) curve of both atria in the MI but not in non-MI dogs. Two-dimensional simulation in an excitable matrix containing an isthmus and nicotine's restitutional and reduced gap junctional coupling (fibrosis) parameters replicated the experiments. Chronic nicotine in hearts with MI promotes AFL that closely resembles typical human AFL. Increased atrial interstitial fibrosis and flattened electrical restitution are important substrates for the AFL.  相似文献   

6.
Experimental models of unprovoked atrial tachyarrhythmias (AT) in conscious, ambulatory animals are lacking. We hypothesized that the aging, spontaneously hypertensive rat (SHR) may provide such a model. Baseline ECG recordings were acquired with radiotelemetry in eight young (14-wk-old) and eight aging (55-wk-old) SHRs and in two groups of four age-matched Wistar-Kyoto (WKY) rats. Quantification of AT and heart rate variability (HRV) analysis were performed based on 24-h ECG recordings in unrestrained rats. All animals were submitted to an emotional stress protocol (air-jet). In SHRs, carbamylcholine injections were also performed. Spontaneous AT episodes were observed in all eight aging SHRs (median, 91.5; range, 4-444 episodes/24 h), but not in young SHRs or WKY rats. HRV analysis demonstrated significantly decreased low frequency components in aging SHRs compared with age-matched WKY rats (P < 0.01) and decreased low/high frequency ratios in both young (P < 0.01) and aging (P = 0.01) SHRs compared with normotensive controls. In aging SHRs, emotional stress significantly reduced the number of arrhythmic events, whereas carbamylcholine triggered AT and significantly increased atrial electrical instability. This study reports the occurrence of unprovoked episodes of atrial arrhythmia in hypertensive rats, and their increased incidence with aging. Our results suggest that autonomic imbalance with relative vagal hyperactivity may be responsible for the increased atrial arrhythmogenicity observed in this model. We also provide evidence that, in this model, the sympatho-vagal imbalance preceded the occurrence of arrhythmia. These results indicate that aging SHRs may provide valuable insight into the understanding of atrial arrhythmias.  相似文献   

7.
Tongguan capsule is a compound Chinese medicine used to treat ischaemic heart diseases. This study aimed to investigate whether Tongguan capsule‐derived herb (TGD) has a preventive effect on atrial fibrillation (AF) in post‐myocardial infarction (MI) rats and to determine the underlying mechanisms. MI was induced by ligation of the left anterior descending coronary artery. TGD was administered to the post‐MI rats over a 4‐week period. The TGD‐treated rats had lower rates of AF inducibility and shorter AF durations than the MI rats. TGD improved the left atrial (LA) conduction velocity and homogeneity. It reduced the fibrosis‐positive areas and the protein levels of collagen types I and III in the left atrium. In vitro, it inhibited the expression of collagen types I and III by inhibiting the proliferation, migration, differentiation and cytokine secretion of cardiac fibroblasts (CFs). In conclusion, the current study demonstrated that TGD reduces susceptibility to AF and improves LA conduction function in rats with post‐MI by inhibiting left atrial fibrosis and modulating CFs. Targeting the CF population may be a novel antiarrhythmic therapeutic approach.  相似文献   

8.
The failing ventricular myocardium is characterized by reduction of high-energy phosphates and reduced activity of the phosphotransfer enzymes creatine kinase (CK) and adenylate kinase (AK), which are responsible for transfer of high-energy phosphoryls from sites of production to sites of utilization, thereby compromising excitation-contraction coupling. In humans with chronic atrial fibrillation (AF) unassociated with congestive heart failure (CHF), impairment of atrial myofibrillar energetics linked to oxidative modification of myofibrillar CK has been observed. However, the bioenergetic status of the failing atrial myocardium and its potential contribution to atrial electrical instability in CHF have not been determined. Dogs with (n = 6) and without (n = 6) rapid pacing-induced CHF underwent echocardiography (conscious) and electrophysiological (under anesthesia) studies. CHF dogs had more pronounced mitral regurgitation, higher atrial pressure, larger atrial area, and increased atrial fibrosis. An enhanced propensity to sustain AF was observed in CHF, despite significant increases in atrial effective refractory period and wavelength. Profound deficits in atrial bioenergetics were present with reduced activities of the phosphotransfer enzymes CK and AK, depletion of high-energy phosphates (ATP and creatine phosphate), and reduction of cellular energetic potential (ATP-to-ADP and creatine phosphate-to-Cr ratios). AF duration correlated with left atrial area (r = 0.73, P = 0.01) and inversely with atrial ATP concentration (r = -0.75, P = 0.005), CK activity (r = -0.57, P = 0.054), and AK activity (r = -0.64, P = 0.02). Atrial levels of malondialdehyde, a marker of oxidative stress, were significantly increased in CHF. Myocardial bioenergetic deficits are a conserved feature of dysfunctional atrial and ventricular myocardium in CHF and may constitute a component of the substrate for AF in CHF.  相似文献   

9.
Studies were performed in conscious, chronically catheterized male Sprague-Dawley rats to investigate the effect of administered atrial natriuretic peptide (ANP) on blood pressure, renal hemodynamics and urinary electrolyte excretion. Studies were performed on young adult (3-4 month old) rats and on aging rats (18-24 months of age). Low dose ANP (80 ng/kg/min for 60 min) had no effects on renal hemodynamics in either young or old rats and produced only a slight blood pressure reduction in young animals. No effect on urinary electrolyte excretion was evident in young rats whereas in the old animals, low dose ANP produced large rises in the rate of sodium excretion, fractional excretion of sodium and urine flow rate. A four fold higher dose of ANP evoked a moderate natriuretic and a marked antihypertensive response in young rats. Time control studies indicated that time alone had no influence on urinary sodium excretion rate, the fractional excretion of sodium or urine flow rate. These studies indicate a much enhanced sensitivity to the natriuretic effects of administered ANP by the kidneys of old rats.  相似文献   

10.
Ibutilide can prolong refractory period and terminate reentry. Whether ibutilide has the same effects on pulmonary vein (PV) focal discharge (FD) is unclear. We induced sustained atrial fibrillation (AF) in seven dogs by rapid left atrial (LA) pacing for 74 +/- 46 days. Ibutilide was repeatedly infused until it terminated AF (0.02 +/- 0.01 mg/kg) or when a cumulative dose was reached (0.04 mg/kg). High-resolution computerized epicardial mapping was performed. We found intermittent FD at the PVs and reentry at the PV-LA junction during AF. Ibutilide increased the cycle length of consecutive reentry from 97 +/- 13 to 112 +/- 18 ms and increased FD from 96 +/- 7 to 113 +/- 9 ms. In four dogs with both FD and reentry at the PVs, the incidence of reentry decreased from 3.5 +/- 1.9/s at baseline to 2.2 +/- 1.8/s after ibutilide administration. However, the incidence of FD remained unchanged. The conducted wave fronts between PV and LA were significantly reduced by ibutilide (10.4 +/- 2.0/s vs. 8.0 +/- 1.6/s). The ibutilide dose needed to terminate AF correlated negatively with the baseline effective refractory period of PV and LA. We conclude that ibutilide reduces reentrant wave fronts but not PV FD in a canine model of pacing-induced sustained AF. These findings suggest that the PV FD during AF is due to nonreentrant mechanisms. High doses of ibutilide may completely terminate all reentrant activity, converting AF to PV tachycardia before the resumption of sinus rhythm.  相似文献   

11.
The purpose of the present study was to determine whether variations in salt intake would alter the plasma concentrations of atrial natriuretic factor and the N-terminal atrial natriuretic factor prohormone peptides proANF 1-98 and proANF 31-67. Two groups of rats were placed on different salt intakes for 1 week. The low salt group of rats was fed a diet providing less than 0.1 mM NaCl/day and given deionized water to drink. The normal salt group of rats was fed regular rat chow with deionized water to drink, providing them with approximately 2 mM NaCl/day. Plasma atrial natriuretic factor was 204 +/- 60 pg/ml (mean +/- SE) in normal salt rats and was significantly lower in the low salt group (44 +/- 13 pg/ml, P less than 0.01). ProANF 1-98 was also significantly higher in the normal salt group (635 +/- 47 pg/ml) compared with the low salt group (353 +/- 33 pg/ml, P less than 0.01). ProANF 31-67 was 123 +/- 21 pg/ml in the normal salt group and 59 +/- 12 pg/ml in the low salt group (P less than 0.05). Plasma renin activity in ng angiotensin l/ml/hr averaged 1.80 +/- 0.15 in the normal salt group of rats and was significantly higher in the low salt group of rats (5.66 +/- 1.07, P less than 0.05). These results suggest that atrial natriuretic factor and the atrial natriuretic factor prohormones may play a role in the physiological adjustments to low salt intake.  相似文献   

12.
This study examined the changes in the circulating level of endogenous atrial natriuretic factor during diuresis and natriuresis produced by acute volume expansion in anesthetized rats with either bilateral atrial appendectomy (n = 9) or sham operation (n = 9). Following control measurements in the sham-operated rats, 1% body weight volume expansion with isotonic saline produced an increment in urinary sodium excretion of over 4 mueq/min (P less than 0.05) while urine volume increased by more than 20 microliter/min (P less than 0.05). These responses were associated with a significant increase in immunoreactive plasma atrial natriuretic factor from a baseline value of 82 +/- 10 pg/ml to a level of 120 +/- 14 pg/ml (P less than 0.05). In contrast, in the group of rats with bilateral atrial appendectomy an identical degree of volume expansion increased urinary sodium excretion and urine volume by only 0.61 mueq/min (P less than 0.05) and 3.07 microliter/min (P less than 0.05), respectively. In this group, immunoreactive plasma atrial natriuretic factor remained statistically unchanged from a control value of 70 +/- 12 pg/ml to a level of 82 +/- 16 pg/ml (P greater than 0.05). Comparison of the two groups indicates that the natriuresis, diuresis, and plasma atrial natriuretic factor levels during volume expansion were significantly reduced in the rats with bilateral atrial appendectomy. No differences in mean arterial pressure and heart rate were observed between the two groups. These data demonstrate that removal of both atrial appendages in the rat attenuated the release of atrial natriuretic factor during volume expansion; and this effect, in turn, was associated with a reduction in the natriuretic and diuretic responses.  相似文献   

13.
Distension of the atrial wall has been proposed as a signal for the increased release of atrial natriuretic factor (ANF) from atrial myocytes in response to perceived volume overload. To determine whether pressure changes resulting from hypertension in the pulmonary circulation may stimulate release of ANF, rats were exposed to chronic hypobaric hypoxia for 3 or 21 days and the ANF concentration in the atria and plasma were determined by specific radioimmunoassay. Exposure to chronic hypoxia resulted in significant increases in hematocrit at both 3 (p less than 0.025) and 21 days (p less than 0.005) and in the development of right ventricular hypertrophy (RVH) expressed as the ratio of the weight of the right ventricle to the weight of the left ventricle and septum (RV/LV+S) at both 3 (RV/LV+S = 0.278 +/- 0.005) and 21 days (RV/LV+S = 0.536 +/- 0.021). After 21 days, left atrial (LA) ANF content was significantly increased in hypoxic rats compared to controls (508 +/- 70 ng/mg tissue vs 302 +/- 37 ng/mg), while right atrial (RA) ANF content was significantly reduced (440 +/- 45 vs 601 +/- 58 ng/mg). At this time, plasma ANF concentration was significantly elevated compared to controls (238 +/- 107 pg/ml vs 101 +/- 10 pg/ml). These results suggest that the development of pulmonary hypertension following chronic hypobaric exposure induces altered atrial ANF content and increased plasma ANF concentration as a result of altered distension of the atrial wall.  相似文献   

14.
Identification of the critical isthmus of the reentrant tachycardia is essential to maximize the effect of catheter ablation (CA) and to minimize the myocardial injury of CA. An 81-year-old woman presented recurrent palpitations after CA of atrial fibrillation (AF) and atrial tachycardia (AT). She had moderate aortic valve stenosis and coronary artery disease. She had received a pulmonary vein isolation, left atrial (LA) posterior wall isolation, and LA anterior linear ablation for atrial fibrillation 1 year prior. At the start of the procedure, she was in sinus rhythm. Atrial burst pacing induced an AT (230msec). High-density mapping revealed a figure-of-eight activation pattern within the LA appendage (LAA), accounting for 99% of the tachycardia cycle length. The critical isthmus was identified at the mid LAA and the local electrogram of the critical isthmus was not fractionated. A single radiofrequency application at the critical isthmus of the AT, terminated the AT. She was free from any ATs for 28 months.Radiofrequency ablation of the localized reentrant AT was usually performed targeting long fractionated electrograms. In our case, the local electrogram at the critical isthmus was not fragmented compared with the LAA distal part. Long fractionated electrograms were recorded at a more distal part of the LAA than the common isthmus and we could avoid the potential risk of a perforation. A recent developed 3-dimensional electro-anatomical mapping system can identify the critical isthmus and allow us to select a new therapeutic strategy for a critical isthmus ablation of an AT within the LAA.  相似文献   

15.
Immunoreactive atrial natriuretic peptide (IR-ANP) was measured in plasma and atrium of normal and monocrotaline induced pulmonary hypertensive rats (PH rats). In these animals, there was right ventricular hypertrophy and right ventricular systolic pressure was elevated. Fourteen days after a single dose of monocrotaline (40 mg/kg), plasma IR-ANP concentrations were significantly elevated (964.3 +/- 63.0 pg/ml vs. 521.0 +/- 81.9 pg/ml in controls, p less than 0.001). Tissue levels of IR-ANP in the right atrium in PH rats was significantly lower than those in the controls (45.1 +/- 3.9 ng/mg vs. 240.5 +/- 10.4 ng/mg, p less than 0.001), while there was no significant difference in tissue levels of atrial IR-ANP in the left atrium between the two groups. Thus, development of pulmonary hypertension led to an increase in release of ANP from the right atrium.  相似文献   

16.
Several animal models of atrial fibrillation (AF) have been developed that demonstrate either atrial structural remodeling or atrial electrical remodeling, but the characteristics and spatiotemporal organization of the AF between the models have not been compared. Thirty-nine dogs were divided into five groups: rapid atrial pacing (RAP), chronic mitral regurgitation (MR), congestive heart failure (CHF), methylcholine (Meth), and control. Right and left atria (RA and LA, respectively) were simultaneously mapped during episodes of AF in each animal using high-density (240 electrodes) epicardial arrays. Multiple 30-s AF epochs were recorded in each dog. Fast Fourier transform was calculated every 1 s over a sliding 2-s window, and dominant frequency (DF) was determined. Stable, discrete, high-frequency areas were seen in none of the RAP or control dogs, four of nine MR dogs, four of six CHF dogs, and seven of nine Meth dogs in either the RA or LA or both. Average DFs in the Meth model were significantly greater than in all other models in both LA and RA except LA DFs in the RAP model. The RAP model was the only one with a consistent LA-to-RA DF gradient (9.5 +/- 0.2 vs. 8.3 +/- 0.3 Hz, P < 0.00005). The Meth model had a higher spatial and temporal variance of DFs and lower measured organization levels compared with the other AF models, and it was the only model to show a linear relationship between the highest DF and dispersion (R(2) = 0.86). These data indicate that structural remodeling of atria (models known to have predominantly altered conduction) leads to an AF characterized by a stable high-frequency area, whereas electrical remodeling of atria (models known to have predominantly shortened refractoriness without significant conduction abnormalities) leads to an AF characterized by multiple high-frequency areas and multiple wavelets.  相似文献   

17.
目的:探讨二十二碳六烯酸(DHA)对大鼠心房颤动(AF)模型心房肌生理特性的影响及相关机制研究。方法:80只乙酰胆碱-氯化钙混合液敏感的SD大鼠分为对照组(CTL组)、DHA处理组(DHA组)、房颤组(AF组)和房颤+DHA处理组(DHA+AF组),观察房颤持续时间;采用全细胞膜片钳技术记录大鼠心房肌细胞动作电位时程(APD)和双孔钾通道TASK-1电流,Western blot测定大鼠心房组织TASK-1蛋白表达。结果:大鼠尾静脉注射乙酰胆碱-氯化钙混合液后,房颤持续时间随实验天数增加而逐渐延长,DHA干预缩短房颤持续时间。与CTL组相比,AF组大鼠心房肌细胞复极50%时的动作电位时程(APD50)和复极90%时的动作电位时程(APD90)明显缩短,心房肌细胞TASK-1电流密度升高,蛋白表达升高(P<0.05)。与AF组相比,DHA+AF组大鼠心房肌细胞APD50和APD90明显延长,TASK-1电流密度和蛋白表达降低(P<0.05)。结论:DHA具有延长房颤大鼠心房肌细胞APD的作用,可能与其下调心房肌TASK-1蛋白的表达从而降低心房肌细胞TASK-1电流密度有关。  相似文献   

18.
Atrial fibrillation (AF) induces a progressive dilatation of the atria which in turn might promote the arrhythmia. The mechanism of atrial dilatation during AF is not known. To test the hypothesis that loss of atrial contractile function is a primary cause of atrial dilatation during the first days of AF, eight goats were chronically instrumented with epicardial electrodes, a pressure transducer in the right atrium, and piezoelectric crystals to measure right atrial diameter. AF was induced with the use of repetitive burst pacing. Atrial contractility was assessed during sinus rhythm, atrial pacing (160-, 300-, and 400-ms cycle length), and electrically induced AF. The compliance of the fibrillating right atrium was measured during unloading the atria with diuretics and loading with 1 liter of saline. All measurements were repeated after 6, 12, and 24 h of AF and then once a day during the first 5 days of AF. Recovery of the observed changes after spontaneous cardioversion was also studied. After 5 days of AF, atrial contractility during sinus rhythm or slow atrial pacing was greatly reduced. During rapid pacing (160 ms) or AF, the amplitude of the atrial pressure waves had declined to 20% of control. The compliance of the fibrillating atria increased twofold, whereas the right atrial pressure was unchanged. As a result, the mean right atrial diameter increased by approximately 12%. All changes were reversible within 3 days of sinus rhythm. We conclude that atrial dilatation during the first days of AF is due to an increase in atrial compliance caused by loss of atrial contractility during AF. Atrial compliance and size are restored when atrial contractility recovers after cardioversion of AF.  相似文献   

19.
The role of atrial dilatation in the domestication of atrial fibrillation   总被引:7,自引:0,他引:7  
Numerous clinical investigations as well as recent experimental studies have demonstrated that atrial fibrillation (AF) is a progressive arrhythmia. With time paroxysmal AF becomes persistent and the success rate of cardioversion of persistent AF declines. Electrical remodeling (shortening of atrial refractoriness) develops within the first days of AF and contributes to the increase in stability of the arrhythmia. However, ‘domestication of AF’ must also depend on other mechanisms since the persistence of AF continues to increase after electrical remodeling has been completed. During the first days of AF in the goat, electrical and contractile remodeling (loss of atrial contractility) followed exactly the same time course suggesting that they are due to the same underlying mechanism. Contractile remodeling not only enhances the risk of atrial thrombus formation, it also enhances atrial dilatation by increasing the compliance of the fibrillating atrium. In goats with chronic AV-block atrial dilatation increased the duration of artificially induced AF-episodes but did not change atrial refractoriness or the AF cycle length. When AF was maintained a couple of days in these animals, a shortening of the atrial refractory period did occur. However, the AF cycle length did not decrease. Long lasting episodes of AF with a long AF cycle length and a wide excitable gap suggest that in this model AF is mainly promoted by conduction disturbances. Chronic atrial stretch induces activation of numerous signaling pathways leading to cellular hypertrophy, fibroblast proliferation and tissue fibrosis. The resulting electroanatomical substrate in dilated atria is characterized by increased non-uniform anisotropy and macroscopic slowing of conduction, promoting reentrant circuits in the atria. Prevention of electroanatomical remodeling by blockade of pathways activated by chronic atrial stretch therefore provides a promising strategy for future treatment of AF.  相似文献   

20.
Serum testosterone (T) and 5alpha-dihydrotestosterone (DHT) were measured in young, adult and old Albino Wistar male rats using a sensitive and reliable radioimmunoassay, after separating T from DHT by thin layer chromatography. The mean plus or minus S.E.M. for T in young, adult and old rats were 62 plus or minus 11, 250 plus or minus 27 and 125 plus or minus 25 (ng/100 ml) respectively. Serum T was increased in adults (P less than 0.001) and decreased in old rats (P less than 0.01). The mean plus or minus S.E.M. for serum DHT was 8 plus or minus 2, 19 plus or minus 2 and 17 plus or minus 1 (ng/100 ml) for young, adult and old rats respectively. DHT was increased in adults (P less than 0.001), but did not change in old rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号