首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Periosteum-derived progenitor cells (PDPCs) could be differentiated into cartilage using atelocollagen as a carrier and in the presence of transforming growth factor-β3 (TGF-β3). Chondrogenesis was verified by RT-PCR and Western blotting. Expression of the type II collagen mRNA was found from the differentiated PDPCs in atelocollagen 3 weeks after chondrogenic induction. The chondrogenic potential of the PDPCs was also verified by histochemical staining for type II collagen protein. Increased production of glycosaminoglycan shows that the PDPCs in atelocollagen could differentiate into chondrocytes under a chondrogenic environment. PDPCs can therefore be used as a cell source for cell-based therapies targeted toward the articular cartilage of the knee.  相似文献   

2.
Periosteum-derived progenitor cells (PDPCs) were isolated by characteristic surface markers. Reproducibility of immunophenotypes of the PDPCs was characterized by flow cytometric analysis using fluorescence-activated cell sorter (FACS). SH2+, SH3+, SH4+, CD9+, CD90+ and CD105+ were important eternal characteristic cell surface markers for the PDPCs. The characterized PDPCs maintained their chondrogenic potential in pellet cultures until the 15th passage from primary cell culture.  相似文献   

3.
Chondrogenic differentiation of amniotic fluid-derived stem cells   总被引:3,自引:0,他引:3  
For regenerating damaged articular cartilage, it is necessary to identify an appropriate cell source that is easily accessible, can be expanded to large numbers, and has chondrogenic potential. Amniotic fluid-derived stem (AFS) cells have recently been isolated from human and rodent amniotic fluid and shown to be highly proliferative and broadly pluripotent. The purpose of this study was to investigate the chondrogenic potential of human AFS cells in pellet and alginate hydrogel cultures. Human AFS cells were expanded in various media conditions, and cultured for three weeks with growth factor supplementation. There was increased production of sulfated glycosaminoglycan (sGAG) and type II collagen in response to transforming growth factor-β (TGF-β) supplementation, with TGF-β1 producing greater increases than TGF-β3. Modification of expansion media supplements and addition of insulin-like growth factor-1 during pellet culture further increased sGAG/DNA over TGF-β1 supplementation alone. Compared to bone marrow-derived mesenchymal stem cells, the AFS cells produced less cartilaginous matrix after three weeks of TGF-β1 supplementation in pellet culture. Even so, this study demonstrates that AFS cells have the potential to differentiate along the chondrogenic lineage, thus establishing the feasibility of using these cells for cartilage repair applications.  相似文献   

4.
Adipose-derived stromal cells (ADSCs) are multipotent cells which, in the presence of appropriate stimuli, can differentiate into various lineages such as the osteogenic, adipogenic and chondrogenic. In this study, we investigated the effect of transforming growth factor beta 1 (TGF-β1) in comparison to hydrolyzed fish collagen in terms of the chondrogenic differentiation potential of ADSCs. ADSCs were isolated from subcutaneous fat of horses by liposuction. Chondrogenesis was investigated using a pellet culture system. The differentiation medium was either supplemented with TGF-β1 (5 ng/ml) or fish collagen (0.5 mg/ml) for a 3 week period. After the 3 weeks in vitro differentiation, RT-PCR and histological staining for proteoglycan synthesis and type II collagen were performed to evaluate the degree of chondrogenic differentiation and the formation of cartilaginous extracellular matrix (ECM). The differentiation of ADSCs induced by TGF-β1 showed a high expression of glycosaminoglycan (GAG). Histological analysis of cultures stimulated by hydrolyzed fish collagen demonstrated an even higher GAG expression than cultures stimulated under standard conditions by TGF-β1. The expression of cartilage-specific type II collagen and Sox9 was about the same in both stimulated cultures. In this study, chondrogenesis was as effectively induced by hydrolyzed fish collagen as it was successfully induced by TGF-β1. These findings demonstrated that hydrolyzed fish collagen alone has the potential to induce and maintain ADSCs-derived chondrogenesis. These results support the application of ADSCs in equine veterinary tissue engineering, especially for cartilage repair.  相似文献   

5.
Thermally synthesized poly(aspartate) (tPAA) shows potential for use in a wide variety of products and applications as a biodegradable replacement for non-biodegradable polycarboxylates, such as poly(acrylate). The tPAA molecule has unnatural structures, and the relationship between its biodegradability and structures has been investigated. Two tPAA-degrading bacteria, Sphingomonas sp. KT-1 and Pedobacter sp. KP-2, were isolated from river water; from them, two PAA-hydrolyzing enzymes, PAA hydrolases-1 and -2, were purified and biologically and genetically characterized. Interestingly, not only are PAA hydrolases-1 from those two strains novel in terms of structural genes and substrate specificities (they specifically cleave the amide bond between β-aspartate units in tPAA), they also probably play a central role in tPAA biodegradation by both strains. In green polymer chemistry, one active area of research is the use of purified enzymes for the enzyme-catalyzed synthesis of polypeptides by taking advantage of their substrate specificities. Recently, β-peptides have attracted academic and industrial interest as functional materials as they possess both functions of α-peptides and excellent metabolic stability. As one of the attractive applications of PAA hydrolases, we report here the enzyme-catalyzed synthesis of poly(α-ethyl β-aspartate), which is composed of only β-linkages and belongs to β-peptides, using the unique substrate specificity of the enzyme from Pedobacter sp. KP-2.  相似文献   

6.
Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days’ culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days’ culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-β signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.  相似文献   

7.
The cell wall of the red alga Bangia atropurpurea is composed of three unique polysaccharides (β-1,4-mannan, β-1,3-xylan, and porphyran), similar to that in Porphyra. In this study, we visualized β-mannan in the regenerating cell walls of B. atropurpurea protoplasts by using a fusion protein of a carbohydrate-binding module (CBM) and green fluorescent protein (GFP). A mannan-binding family 27 CBM (CBM27) of β-1,4-mannanase (Man5C) from Vibrio sp. strain MA-138 was fused to GFP, and the resultant fusion protein (GFP–CBM27) was expressed in Escherichia coli. Native affinity gel electrophoresis revealed that GFP–CBM27 maintained its binding ability to soluble β-mannans, while normal GFP could not bind to β-mannans. Protoplasts were isolated from the fronds of B. atropurpurea by using three kinds of bacterial enzymes. The GFP–CBM27 was mixed with protoplasts from different growth stages, and the process of cell wall regeneration was observed by fluorescence microscopy. Some protoplasts began to excrete β-mannan at certain areas of their cell surface after 12 h of culture. As the protoplast culture progressed, β-mannans were spread on their entire cell surfaces. The percentages of protoplasts bound to GFP–CBM27 were 3%, 12%, 17%, 29%, and 25% after 12, 24, 36, 48, and 60 h of culture, respectively. Although GFP–CBM27 bound to cells at the initial growth stages, its binding to the mature fronds was not confirmed definitely. This is the first report on the visualization of β-mannan in regenerating algal cell walls by using a fluorescence-labeled CBM.  相似文献   

8.
9.
TGF-β1 plays a necessary and important role in the induction of chondrogenic differentiation of bone marrow stromal cells (BMSCs). In this study, porcine BMSCs were infected with a replication-deficient adenovirus expression vector carrying the hTGF-β1 gene. The transduced BMSCs were cultured as pelleted micromasses in vitro for 21 days, seeded onto disk-shaped PGA scaffolds for 3 days and subsequently implanted into the subcutaneous tissue of mice. BMSCs transduced with AdhTGF-β1 expressed and secreted more hTGF-β1 protein in vitro than those of the control group. Histological and immunohistological examination of the pellets revealed robust chondrogenic differentiation. Tissues made from cells transduced with AdhTGF-β1 exhibited neocartilage formation after 3 weeks in vivo. The neocartilage occupied 42 ± 5% of the total tissue volume which was significantly greater than that of the control group. Furthermore, there was extensive staining for sulfated proteoglycans and type II collagen in the AdhTGF-β1 group compared to controls, and quantification of GAG content showed significantly greater amounts of GAG in experimental groups. The results demonstrate that transfer of hTGF-β1 into BMSCs via adenoviral transduction can induce chondrogenic differentiation in vitro and enhance chondrogenesis in vivo.  相似文献   

10.
The antisense fragments, which were available inin vitro system, were cloned into the mammalian expression vector pcDNA3, and were transfected into H654 cells, a mammalian cell line stably expressing the thalassaemic (IVS-2-654 C→T) human β-globin gene. In these transfected cells, the level of correctly spliced β-globin mRNA in total β-globin mRNA (β/(β + β*)) was improved from 0.07 (0 d) to 0.22 (3 d), and this effect persisted for up to 15 d post transfection. All the results demonstrated that antisense RNAs were able to be transcribed from the antisense fragment expression vectors stably and effectively suppressed aberrant splicing pattern of the mutated β-globin gene (IVS-2-654 C→T) and restored correct splicing pathway. This work provided a novel approach with potential clinical significance to gene therapy of this kind of splicing mutants including β-thalassaemia (IVS-2-654 C→T) by antisense RNAs. Project supported in part by the National Natural Science Foundation of China (Grant Nos. 39780019, 39392903) and the Shanghai Life Sciences Research Centre.  相似文献   

11.
Summary Non-resorbable thermoplastic polymers have become more important for reconstructive surgery due to their excellent chemical and physical properties. Polyetheretherketone-β-tricalcium phosphate (βTCP-PEEK) composites were developed as alternative materials for load-bearing applications. This study presents the effect of polyetheretherketone (PEEK) specimens incorporated with 5, 10, 20 and 40 wt% β-tricalcium phosphate (βTCP) and processed by injection molding on cultivated osteoblast cells. Normal human osteoblast (NHOst) cells were seeded onto polymer discs to evaluate cell viability and proliferation after 24, 72 and 120 h of cultivation by employing the WST-1 assay. Standard tissue culture plastic was used as a control. The osteoblast cells were found to be viable in all PEEK groups, while the cell proliferation was progressively inhibited due to the incorporated β-tricalcium phosphate. βTCP-PEEK showed concentration independent decrease of cell proliferation compared to the unfilled PEEK and the control group. In summary, this study confirms the non-toxic nature of pure PEEK, whereas this could not definitely be verified for βTCP-PEEK as a composite material in chosen concentrations of β-tricalcium phosphate in vitro.  相似文献   

12.
Cell walls of Bacillus subtilis VKM B-760 and VKM B-764 are characterized by heterogeneous composition of teichoic acids. Polymer I with structure -6)-β-D-Galp-(1→1)-sn-Gro-(3-P-, polymer II with structure -6)-α-D-Glcp-(1→1)-sn-Gro-(3-P-, and a small amount of unsubstituted 1,3-poly(glycerol phosphate) were detected in strain VKM B-760. Strain VKM B-764 contains an analogous set of teichoic acids, but a characteristic feature of polymer II is the presence of disubstituted glycerol residue with α-glucopyranose localization in the integral chain at C-1 hydroxyl and β-glucopyranose as a side branch at C-2 hydroxyl (polymer III): -6)-α-D-Glcp-(1→1)-[β-D-Glcp-(1→2)]-sn-Gro-(3-P-. The structures of polymer I in bacilli and polymer III in Gram-positive bacteria are described for the first time. Teichoic acids were studied by chemical methods and on the basis of combined analysis of one-dimensional 1H-, 13C-, and 31P-NMR spectra, homonuclear two-dimensional 1H/1H COSY, TOCSY, and ROESY, and heteronuclear two-dimensional 1H/13C gHSQC- and HMQC-TOCSY experiments. Simultaneous presence of several different structure teichoic acids in the bacillus cell walls as well as chemotaxonomical perspectives of the application of these polymers as species-specific markers for members of the Bacillus genus is discussed.  相似文献   

13.
14.
Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins implicated in several aspects of plant growth and development. (β-d-glucosyl)3 Yariv phenylglycoside (β-GlcY), commonly known as Yariv reagent, selectively binds AGPs. We treated cell suspension cultures of Araucaria angustifolia, the Brazilian pine, with β-GlcY and observed inhibition of biomass increase in a culture medium with 50 μM β-GlcY. However, the growth was not inhibited by (α-d-galactosyl)3 Yariv phenylglycoside (α-GalY) which does not bind AGPs. Fluorescein diacetate staining of cells indicated that β-GlcY severely affected cell viability. However, cell swelling, bursting and release of cellular contents, all characteristics of necrotic cell death, were not observed in β-GlcY-treated cells. Instead, programmed cell death (PCD) structural changes such as cytoplasmic shrinkage and condensation were observed in β-GlcY-treated cells. In addition, callose accumulation, which is another marker of PCD, was also observed in β-GlcY-treated cells. The use of both, Ac-VEID-CHO, an inhibitor of caspase-like proteolytic activity related to PCD, and phenyl methyl sulphonyl fluoride (PMSF), a protease inhibitor known to suppress PCD, in the culture medium did not reverse the growth inhibition caused by β-GlcY. These data indicate that the β-GlcY-induced inhibition of Araucaria cell’s growth is related to AGP perturbation, and also that this growth inhibition is due to increased cell death not driven by necrosis.  相似文献   

15.
Multiple endocrine neoplasia type 1 (MEN 1) is inherited as an autosomal dominant disorder, characterized by hyperplasia and neoplasia in several endocrine organs. The MEN 1 gene, which is most probably a tumor suppressor gene, has been localized to a 900-kb region on chromosome 11q13. The human phosphatidylinositol-specific phospholipase C β3 (PLC β3) gene, which is located within this region, was considered to be a good candidate for the MEN 1 gene. In this study, the structure and expression of the PLC β3 gene in MEN 1 patients were investigated in more detail, to determine its potential role in MEN 1 tumorigenesis. Southern blot analysis, using blood and tumor DNA from affected persons from seven different MEN 1 families, did not reveal structural abnormalities in the PLC β3 gene. To detect possible point mutations, or other small structural aberrations, direct sequencing of PLC β3 cDNAs from two affected persons from two different MEN 1 families was performed, but no MEN 1-specific abnormalities were revealed. Several common nucleotide sequence polymorphisms were detected in these cDNAs, proving that both alleles of the PLC β3 gene were expressed and analyzed. In conclusion, these results exclude the PLC β3 gene as a candidate gene for MEN 1. Received: 20 March 1996  相似文献   

16.
The wild perciform teleost Neogobius melanostomus (the round goby) originated from the Ponto-Caspian region and is now a highly successful invasive species in the Laurentian Great Lakes. Males may attract females into their nests for spawning by releasing reproductive pheromones, and it has been previously shown that reproductive males synthesize and release the 5β-reduced and 3α-hydroxyl steroids 3α-hydroxy-5β-androstane-11,17-dione (11-oxo-etiocholanolone; 11-O-ETIO) and 3α-hydroxy-5β-androstane-11,17-dione 3-sulfate (11-oxo-etiocholanolone-3-sulfate; 11-O-ETIO-3-s) and 3α,17β-dihydroxy-5β-androstan-11-one 17-sulfate. In this study, we investigated properties of these released steroids by recording field potential responses from the olfactory epithelium (electro-olfactogram, EOG). The steroid 3α,17β-dihydroxy-5β-androstan-11-one 17-sulfate did not elicit olfactory responses while both 11-O-ETIO and 11-O-ETIO-3-s stimulated olfactory field potentials in the round goby, but not in the goldfish. Cross-adaptation analysis demonstrated that round gobies discriminated between11-O-ETIO and 11-O-ETIO-3-s (as well as etiocholanolone, ETIO) at the sensory level. Second messenger cascades depending on both cAMP and IP3 were inferred for steroids from pharmacological inhibition studies, while the canonical teleost odors taurocholic acid (a bile acid) and l-alanine (an amino acid) used only cAMP and IP3, respectively. The round goby presents itself as an excellent species for the study of olfactory function of fish in the wild, given its possible use of these released steroids as pheromones.  相似文献   

17.
Pseudomonas resinovorans harbors two isogenic poly(hydroxyalkanoates) (PHAs) synthase genes (phaC1 Pre , phaC2 Pre ) responsible for the production of intracellular medium-chain-length (mcl-)PHAs. Sequence analysis showed that the putative gene-products of these genes contain a conserved α/β-hydrolase fold in the carboxy-terminal half of the proteins. Hybrid genes pha7 and pha8 were constructed by exchanging the α/β-hydrolase-fold coding portions of phaC1 Pre and phaC2 Pre at the 3′ terminal. When grown with decanoate as carbon source, the pha7- or pha8-transformed Escherichia coli LS1298 produced PHAs containing 73–75% β-hydroxydecanoate (β-HD) and 25–27% β-hydroxyoctanoate (β-HO). Deletion mutants, Δpha7 and Δpha8, were isolated during the PCR-based construction of pha7 and pha8, respectively. Cells harboring these mutants produced PHAs containing 55–60 mol% β-HD and 40–45 mol% β-HO. These results demonstrate the feasibility of generating active hybrid mcl-PHA synthase genes and their mutants with the potential of producing polymers having a varied repeat-unit composition.  相似文献   

18.
The cell wall of Actinoplanes utahensis VKM Ac-674T contains two anionic polymers: teichoic acid 1,3-poly(glycerol phosphate) that is widespread in cell walls of Gram-positive bacteria; and a unique teichulosonic acid belonging to a new class of bioglycans described only in microorganisms of the Actinomycetales order. The latter polymer contains residues of di-N-acyl derivative of sialic acid-like monosaccharide — 5,7-diamino-3,5,7,9-tetradeoxy-L-glycero-β-L-manno-non-2-ulosonic or pseudaminic acid (Pse) which bears the N-(3,4-dihydroxybutanoyl) group (Dhb) at C7. This polymer has irregular structure and consists of fragments of two types, which differ in substitution of the Dhb residues at O4 either with β-D-glucopyranose or with β-Pse residues. Most of the β-Pse residues (∼80%) are glycosylated at position 4 with α-D-galactopyranose residues in both types of fragments. The glucose, galactose, and Dhb residues are partly O-acetylated. The structures of the polymers were established by chemical and NMR spectroscopy methods.  相似文献   

19.
Sulfated polysaccharides occurring in the red algae Tichocarpus crinitus cell wall were fractionated and purified. NMR and FT-IR spectroscopy analyses revealed that the non-gelling fraction contained a sulfated galactans having a new carrageenan-like structure. It is built with alternatively linked 1,3-linked β-D-galactopyranosyl-2,4-disulphates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl residues. Minor amounts of its biosynthetic precursor were detected in a water-extracted specimen. Brief analysis of rheological and biological properties of the non-gelling fraction was carried out. The carrageenan-like polysaccharide from T. crinitus displayed the properties of “random coil” polymer at high temperature, and possesses high anticoagulant activity at low concentration.  相似文献   

20.
Lung tumor cell DNA copy number alteration (CNA) was expected to display specific patterns such as a large-scale amplification or deletion of chromosomal arms, as previously published data have reported. Peripheral blood mononuclear cell (PBMC) CNA however, was expected to show normal variations in cancer patients as well as healthy individuals, and has thus been used as normal control DNA samples in various published studies. We performed array CGH to measure and compare genetic changes in terms of the CNA of PBMC samples as well as DNA isolated from tumor tissue samples, obtained from 24 non-small cell lung cancer patients. Contradictory to expectations, our studies showed that the PBMC CNA also showed chromosomal variant regions. The list included well-known tumor-associated NTRK1, FGF8, TP53, and TGFβ1 genes and potentially novel oncogenes such as THPO (3q27.1), JMJD1B, and EGR1 (5q31.2), which was investigated in this study. The results of this study highlighted the connection between PBMC and tumor cell genomic DNA in lung cancer patients. However, the application of these studies to cancer prognosis may pose a challenge due to the large amount of information contained in genetic predisposition and family history that has to be processed for useful downstream clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号