首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Most eukaryotic centromeres contain large quantities of repetitive DNA, such as satellite repeats and retrotransposons. Unlike most transposons in plant genomes, the centromeric retrotransposon (CR) family is conserved over long evolutionary periods among a majority of the grass species. CR elements are highly concentrated in centromeres, and are likely to play a role in centromere function. In order to study centromere evolution in the Oryza (rice) genus, we sequenced the orthologous region to centromere 8 of Oryza sativa from a related species, Oryza brachyantha. We found that O. brachyantha does not have the canonical CRR (CR of rice) found in the centromeres of all other Oryza species. Instead, a new Ty3‐gypsy (Metaviridae) retroelement (FRetro3) was found to colonize the centromeres of this species. This retroelement is found in high copy numbers in the O. brachyantha genome, but not in other Oryza genomes, and based on the dating of long terminal repeats (LTRs) of FRetro3 it was amplified in the genome in the last few million years. Interestingly, there is a high level of removal of FRetro3 based on solo‐LTRs to full‐length elements, and this rapid turnover may have played a role in the replacement of the canonical CRR with the new element by active deletion. Comparison with previously described ChIP cloning data revealed that FRetro3 is found in CENH3‐associated chromatin sequences. Thus, within a single lineage of the Oryza genus, the canonical component of grass centromeres has been replaced with a new retrotransposon that has all the hallmarks of a centromeric retroelement.  相似文献   

3.
Polymorphism over ∼26 kb of DNA sequence spanning 22 loci and one region distributed on chromosomes 1, 2, 3 and 4 was studied in 30 accessions of cultivated rice, Oryza sativa, and its wild relatives. Phylogenetic analysis using all the DNA sequences suggested that O. sativa ssp. indica and ssp. japonica were independently domesticated from a wild species O. rufipogon. O. sativa ssp. indica contained substantial genetic diversity (π = 0.0024), whereas ssp. japonica exhibited extremely low nucleotide diversity (π = 0.0001) suggesting the origin of the latter from a small number of founders. O. sativa ssp. japonica contained a larger number of derived and fixed non-synonymous substitutions as compared to ssp. indica. Nucleotide diversity and genealogical history substantially varied across the 22 loci. A locus, RLD15 on chromosome 2, showed a distinct genealogy with ssp. japonica sequences distantly separated from those of O. rufipogon and O. sativa ssp. indica. Linkage disequilibrium (LD) was analyzed in two different regions. LD in O. rufipogon decays within 5 kb, whereas it extends to ∼50 kb in O. sativa ssp. indica. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
 A polymerase chain reaction (PCR) application, involving the directed amplification of minisatellite-region DNA (DAMD) with several minisatellite core sequences as primers, was used to detect genetic variation in 17 species of the genus Oryza and several rice cultivars (O. sativa L.). The electrophoretic analysis of DAMD-PCR products showed high levels of variation between different species and little variation between different cultivars of O. sativa. Polymorphisms were also found between accessions within a species, and between individual plants within an accession of several wild species. The DAMD-PCR yielded genome-specific banding patterns for the species studied. Several DAMD-PCR-generated DNA fragments were cloned and characterized. One clone was capable of detecting multiple fragments and revealed individual-specific hybridization banding patterns using genomic DNA from wild species as well as rice cultivars. A second clone detected only a single polymorphic locus, while a third clone expressed a strong genome specificity by Southern analysis. The results demonstrated that DAMD-PCR is potentially useful for species and genome identification in Oryza. The DAMD-PCR technique also allows for the isolation of informative molecular probes to be utilized in DNA fingerprinting and genome identification in rice. Received: 1 October 1996 / Accepted: 25 April 1997  相似文献   

5.
Inter simple sequence repeat (ISSR) polymorphism was used to determine genetic diversity and phylogenetic relationships in Oryza. Forty two genotypes including 17 wild species, representing AA,BB,CC,EE,FF,GG,BBCC,CCDD, and HHJJgenomes, two cultivated species, Oryza sativa (AA) and Oryza glaberrima (AA), and three related genera, Porteresia coarctata, Leersia and Rhynchoryza subulata, were used in ISSR analysis. A total of 30 ISSR primers were screened representing di-, tri-, tetra- and penta-nucleotide repeats, of which 11 polymorphic and informative patterns were selected to determine the genetic diversity. The consensus tree constructed using binary data from banding patterns generated by ISSR-PCR clustered 42 genotypes according to their respective genomes. ISSR analysis suggests that the genus Oryza may have evolved following a polyphyletic pathway; Oryza brachyantha (FF genome) is the most divergent species in Oryza and Oryza australiensis (EE genome) does not fall under the Officinalis complex. DNA profiles based on ISSR markers have revealed potential diagnostic fingerprints for various species and genomes, and also for individual accessions/cultivars. Additionally ISSR revealed 87 putative genome/species-specific molecular markers for eight of the nine genomes of Oryza. The ISSR markers are thus useful in the fingerprinting of cultivated and wild species germplasm, and in understanding the evolutionary relationships of Oryza. Received: 23 August 1999 / Accepted: 10 November 1999  相似文献   

6.
Relationships between 9Oryza species, covering 6 different genomes, have been studied using hybridization and nucleotide sequence information from the5S Dna locus. Four to five units of the major size class of 5S DNA in each species, 55 units in all, were cloned and sequenced. Both hybridization and sequence data confirmed the basic differences between the A and B, C, D genome species suggested by morphological and cytological data. The 5S DNA units of the A genome species were very similar, as were the ones from the B, C, and D genome-containing species. The 5S DNA ofO. australiensis (E genome) grouped with the B, C, D cluster, while the units ofO. brachyantha (F genome) were quite different and grouped away from all other species. 5S DNA units fromO. minuta, O. latifolia, O. australiensis, andO. brachyantha hybridized strongly, and preferentially, to the genomic DNA from which the units were isolated and hence could be useful as species/genome specific probes. The 5S DNA units fromO. sativa, O. nivara, andO. rufipogon provided A genome-specific probes as they hybridized preferentially to A genome DNA. The units fromO. punctata andO. officinalis displayed weaker preferential hybridization toO. punctata DNA, possibly reflecting their shared genome (C genome).  相似文献   

7.
The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the ‘Oryza Map Alignment Project’ (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project’s finished reference genome – O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara – thought to be the progenitor of modern cultivated rice.  相似文献   

8.
The rice nucleotide-binding site–leucine-rich repeat (NBS-LRR)-encoding resistance (R) gene Pi9 confers broad-spectrum resistance to the fungal pathogen Magnaporthe oryzae. The Pi9 locus comprises many NBS-LRR-like genes and is an ancient locus that is highly conserved in cultivated and wild rice species. To understand the genetic variation and molecular evolutionary mechanism of the Pi9 alleles in different rice species, we studied five AA genome Oryza species including two cultivated rice species (Oryza sativa and Oryza glaberrima) and three wild rice species (Oryza nivara, Oryza rufipogon, and Oryza barthii). A 2.9-kb fragment spanning the NBS-LRR core region of the Pi9 gene was amplified and sequenced from 40 accessions. Sequence comparison revealed that the Pi9 alleles had an intermediate-diversified nucleotide polymorphism among the AA genome Oryza species. Sequence variations were more abundant in the LRR region than in the NBS region, indicating that the LRR region has played a more important role for the evolution of the Pi9 alleles. Furthermore, positive selection was found to be the main force promoting the divergence of the Pi9 alleles, especially in the LRR region. Our results reveal the characteristics and evolutionary dynamics of the Pi9 alleles among the two cultivated and three wild rice species.  相似文献   

9.
A new type of plant retroposon, p-SINE1, has been found in the wx locus of rice (Oryza sativa). It has some structural characteristics similar to those of mammalian SINEs, such as members of the Alu or Bl family. In order to estimate the time at which the integration of p-SINE1 into a single locus occurred during rice evolution, we examined the distribution of two members of p-SINE1 in several species of the Oryza genus by the polymerase chain reaction (PCR). We found that one member of p-SINE1 (p-SINE1-r2) in the ninth intron of the wx + gene was present only in two closely related species, O. sativa and O. rufipogon, and was not present in the other species carrying the AA genome within the Oryza genus. This result indicates that p-SINE1-r2 was integrated into the wx locus after O. sativa and O. rufipogon had diverged from other species with the AA genome. In contrast to p-SINE1-r2, another member (p-SINE1-rl) located in the untranslated 5-region of the wx + gene was present not only in all species with the AA genome but also in species with a different genome (CCDD). This result suggests that p-SINE1-rl was integrated into that position prior to the genomic divergence. Thus, it appears that each member of p-SINE1 was retroposed at a specific site at a different time during rice evolution.Correspondence to: Y. Sano  相似文献   

10.
Summary Ninety-three accessions representing 21 species from the genus Oryza were examined for restriction fragment length polymorphism. The majority (78%) of the accessions, for which five individuals were tested, were found to be monomorphic. Most of the polymorphic accessions segregated for only one or two probes and appeared to be mixed pure lines. For most of the Oryza species tested, the majority of the genetic variation (83%) was found between accessions from different species with only 17% between accessions within species. Tetraploid species were found to have, on average, nearly 50% more alleles (unique fragments) per individual than diploid species reflecting the allopolyploid nature of their genomes.Classification of Oryza species based on RFLPs matches remarkably well previous classifications based on morphology, hybridization and isozymes. In the current study, four species complexes could be identified corresponding to those proposed by Vaughan (1989): the O. ridleyi complex, the O. meyeriana complex, the O. officinalis complex and the O. sativa complex. Within the O. sativa complex, accessions of O. rufipogon from Asia (including O. nivara) and perennial forms of O. rufipogon from Australia clustered together with accessions of cultivated rice O. sativa. Surprisingly, indica and japonica (the two major subspecies of cultivated rice) showed closer affinity with different accessions of wild O. Rufipogon than to each other, supporting a hypothesis of independent domestication events for these two types of rice. Australian annual wild rice O. meridionalis (previously classified as O. rufipogon) was clearly distinct from all other O. rufipogon accessions supporting its recent reclassification as O. meridionalis (Ng et al. 1981). Using genetic relatedness as a criterion, it was possible to identify the closest living diploid relatives of the currently known tetraploid rice species. Results from these analyses suggest that BBCC tetraploids (O. malampuzhaensis, O. punctata and O. minuta) are either of independent origins or have experienced introgression from sympatric C-genome diploid rice species. CCDD tetraploid species from America (O. latifolia, O. alta and O. grandiglumis) may be of ancient origin since they show a closer affinity to each other than to any known diploid species. Their closest living diploid relatives belong to C genome (O. eichingeri) and E genome (O. Australiensis) species. Comparisons among African, Australian and Asian rice species suggest that Oryza species in Africa and Australia are of polyphyletic origin and probably migrated to these regions at different times in the past.Finally, on a practical note, the majority of probes used in this study detected polymorphism between cultivated rice and its wild relatives. Hence, RFLP markers and maps based on such markers are likely to be very useful in monitoring and aiding introgression of genes from wild rice into modern cultivars.  相似文献   

11.
Tourist-OsaCatA, a transposable element, was found in the 5′-flanking region of the rice gene CatA. The characteristics of this element are similar to those of the other Tourist elements so far found in Oryza sativa. PCR and sequence analyses of 37 accessions of 18 species revealed that all the Oryza species examined, except for one accession, have either a full-length or a partial Tourist element at this locus. Unlike the Tourist elements previously reported, this Tourist element is found in all four Oryza species complexes in the Oryzeae tribe. All AA genome Oryza species, except O. longistaminata, contain the full-length Tourist element. O. longistaminata and the species of the O. officinalis, O. meyeriana and O. ridleyi complexes contain the partial element. A phylogenetic tree of Oryza species based on the nucleotide sequences of these Tourist elements was constructed. The O. longistaminata accessions were placed near the neighboring cluster of the officinalis complex. We propose that the ancestor of O. longistaminata and that of other species with the AA genome diverged, and the ancestor(s) of the O. officinalis, O. ridleyi and O. meyeriana complexes then diverged from the ancestor of O. longistaminata in the course of the evolution of the Oryza species. The Tourist elements associated with CatA and its orthologs thus provide useful tools for examining evolutionary relationships among Oryza species. Received: 12 March 1999 / Accepted: 7 July 1999  相似文献   

12.
BL Gross 《Molecular ecology》2012,21(18):4412-4413
Domesticated rice (Oryza sativa) is one of the world’s most important food crops, culturally, nutritionally and economically ( Khush 1997 ). Thus, it is no surprise that there is intense curiosity about its genetic and geographical origins, its response to selection under domestication, and the genetic structure of its wild relative, Oryza rufipogon. Studies of Oryza attempting to answer these questions have accompanied each stage of the development of molecular markers, starting with allozymes and continuing to genome sequencing. While many of these studies have been restricted to small sample sizes, in terms of either the number of markers used or the number and distribution of the accessions, costs are now low enough that researchers are including large numbers of molecular markers and accessions. How will these studies relate to previous findings and long‐held assumptions about rice domestication and evolution? If the paper in this issue of Molecular Ecology ( Huang et al. 2012 ) is any indication, there will be some considerable surprises in store. In this study, a geographically and genomically thorough sampling of O. rufipogon and O. sativa revealed two genetically distinct groups of wild rice and also indicated that only one of these groups appears to be related to domesticated rice. While this fits well with previous studies indicating that there are genetic subdivisions within O. rufipogon, it stands in contrast to previous findings that the two major varieties of O. sativa (indica and japonica) were domesticated from two (or more) subpopulations of wild rice.  相似文献   

13.
Enzyme electrophoresis was used to compare the isozyme phenotypes of Oryza sativa, IR31917 (AA genome), and two O. minuta accessions (Om 101089 and Om101141; BBCC genome) for ten enzyme systems. Between the two species, two systems were monomorphic (isocitrate dehydrogenase and alcohol dehydrogenase) and eight were polymorphic (shikimate dehydrogenase, phosphogluconate dehydrogenase, phosphoglucose isomerase, malate dehydrogenase, glutamate oxaloacetate transaminase, esterase, aminopeptidase, and endopeptidase). Polymorphism between O. minuta accessions was detected for shikimate dehydrogenase and glutamate oxaloacetate. As expected, the quaternary structure of the O. minuta isozymes was comparable to that of O. sativa. Possible allelic relationships with known O. sativa alleles and their genomic designation are discussed. Combined with chromosome data, the interspecific variation was exploited to monitor the relative genetic contribution of the two parents in the IR31917/Om101141 F1 hybrids and recurrent (IR31917) backcross progenies. The isozyme content of F1 hybrid reflected its triploid nature (ABC genome composition), while that of the backcross progenies paralleled the duplication of the A genome and the gradual loss of O. minuta chromosomes during the backcrossing process. Evidence is provided for a degree of homoeology between the A, B, and C genomes, and for introgression from O. minuta into O. sativa.  相似文献   

14.
Summary Cultivated and wild Oryza species belonging to different genomic groups were studied with regard to their soluble seed-protein profiles. There is an essential uniformity in the banding patterns within various genomes and the basic patterns are not species-specific but genome-specific. O. meridionalis contains a subgenome similar to the A genome of O. rufipogon. Certain specific bands present among A genome species have been found to be useful in tracing the phylogenetic affinity between the cultivated species and their presumed wild progenitors.  相似文献   

15.
Summary The amino acid profiles in seeds of thirteen different species ofOryza, including two cultivated rices,O. glaberrima andO. sativa and the two major geographical racesindica andjaponica were studied using an automatic amino acid analyser to assess differences in the profiles of cultivated species and their wild progenitors. The polygon graphic method was employed to envision the species relationship. Essential amino acid profiles in different species were also compared with those of the Food and Agriculture Organization (FAO) standards. The results suggest a wide range of variability amongOryza species for lysine (up to 4.4% as against 3.5% in cultivated rices) and other essential amino acids. This will be of considerable interest to rice breeders, when after overcoming genetic barriers, the possible utilization of these species in rice breeding becomes feasible.  相似文献   

16.
Crop tolerance to flooding is an important agronomic trait. Although rice (Oryza sativa) is considered a flood‐tolerant crop, only limited cultivars display tolerance to prolonged submergence, which is largely attributed to the presence of the SUB1A gene. Wild Oryza species have the potential to unveil adaptive mechanisms and shed light on the basis of submergence tolerance traits. In this study, we screened 109 Oryza genotypes belonging to different rice genome groups for flooding tolerance. Oryza nivara and Oryza rufipogon accessions, belonging to the A‐genome group, together with Oryza sativa, showed a wide range of submergence responses, and the tolerance‐related SUB1A‐1 and the intolerance‐related SUB1A‐2 alleles were found in tolerant and sensitive accessions, respectively. Flooding‐tolerant accessions of Oryza rhizomatis and Oryza eichingeri, belonging to the C‐genome group, were also identified. Interestingly, SUB1A was absent in these species, which possess a SUB1 orthologue with high similarity to O. sativa SUB1C. The expression patterns of submergence‐induced genes in these rice genotypes indicated limited induction of anaerobic genes, with classical anaerobic proteins poorly induced in O. rhizomatis under submergence. The results indicated that SUB1A‐1 is not essential to confer submergence tolerance in the wild rice genotypes belonging to the C‐genome group, which show instead a SUB1A‐independent response to submergence.  相似文献   

17.
Summary Relationships in a wide range of Oryza species (13 species) were analyzed using the large subunits (LS) of Fraction I protein (Rubisco) and the Bam HI restriction patterns of chloroplast DNA (ctDNA) as molecular markers. Four types of LS were detected by isoelectrofocusing with and without S-carboxymethylation. The close relation between AA and CCDD genome species was suggested by analyses of LS and ctDNA. Intraspecific variation in O. latifolia was detected at the levels of both LS and ctDNA. The LS of the BB, BBCC, and CC genomes and FF (O. brachyantha) were not distinguishable, although the native Rubisco of the latter was slightly different from those of the first three. It was also shown that O. australiensis, the only EE genome species, might have evolved differently than the other Oryza species.  相似文献   

18.
The genus Oryza to which cultivated rice belongs has 24 species (2n = 24 or 48), representing seven genomes (AA, BB, CC, EE, FF, BBCC and CCDD). The genomic constitution of five of these species is unknown. These five species have been grouped into two species complexes, the tetraploid ridleyi complex (O. ridleyi, O.␣longiglumis) and the diploid meyeriana complex (O.␣granulata, O. meyeriana, O. indandamanica). To evaluate the genomic structure of these species in terms of divergence at the molecular level vis-à-vis other known genomes of Oryza, we used the total genomic DNA hybridization approach. Total genomic DNA (after restriction digestion) of 79 accessions of 23 Oryza species, 6 related genera, 5 outgroup taxa (2 monocots, 3 dicots) and 6 F1s and BC1s derived from crosses of O.␣sativa with wild species were hybridized individually with 32P-labeled total genomic DNA from 12 Oryza species: O. ridleyi, O. longiglumis, O. granulata, O.␣meyeriana, O. brachyantha, O. punctata, O. officinalis, O. eichingeri, O. alta, O. latifolia, O. australiensis, and O.␣sativa. The labeled genomic DNAs representing the ridleyi and meyeriana complexes cross-hybridized best to all the accessions of their respective species, less to those representing other genomes of Oryza and related genera, and least to outgroup taxa. In general, the hybridization differential measured in terms of signal intensities was >50-fold under conditions that permit detection of 70–75% homologous sequences, both in the presence and in the absence of O. sativa DNA as competitor. In contrast, when total DNAs representing other Oryza genomes were used as probes, species of the O.␣ridleyi and O.␣meyeriana complexes did not show any significant cross-hybridization (<5%). These results demonstrate that the genome(s) of both of these complexes are highly diverged and distinct from all other known genomes of Oryza. We, therefore, propose new genomic designations for these two species complexes: GG for the diploid O. meyeriana complex and HHJJ for the allotetraploid O. ridleyi complex. The results also suggest that the uniqueness of these genomes is not restricted to species-specific highly repetitive DNA sequences, but also applies to dispersed sequences present in single or low to moderate copy numbers. Furthermore these appear to share relatively more genome-specific repeat sequences between themselves than with other genomes of rice. The study also demonstrates the potential of total genomic DNA hybridization as a simple but powerful tool, complementary to existing approaches, for ascertaining the genomic makeup of an organism. Received: 26 July 1996 / Accepted: 17 September 1996  相似文献   

19.
Multicolor genomic in situ hybridization (McGISH) was applied to identify the genomic constitution of three tetraploid species (2n = 4x = 48) in the Oryza officinalis complex of the genus Oryza, i.e. Oryza malam-puzhaensis, Oryza minuta, and Oryza punctata. The genomic probes used were from three diploids, i.e. Oryza officinalis (CC), Oryza eichingeri (CC) and Oryza punctata (BB), respectively. The results indicated that all three tetraploids are allotetraploid with the genomic constitution of BBCC, and among them the genome constitution of O. malampuzhaensis was verified for the first time. Restoration of the independent taxonomic status of O. malampuzhaensis is suggested. One pair of satellite chromosomes belonging to the B genome was identified in O. malampuzhaensis, but no such satellite chromosomes were found in either O. minuta or the tetraploid O. punctata. The average chromosome length of the C genome was found to be slightly larger than that of the B-genome chromosomes of O. minuta, but not in the tetraploids O. punctata and O. malampuzhaensis. McGISH also revealed that the B genome of O. minuta and the B genome of diploid O. punctata showed clear differentiation from each other. Therefore, the suggestion was proposed that the B genome in diploid O. punctata was not the source of the B genome of O. minuta. The present results proved that multicolor GISH had high resolution in identifying the genomic constitution of polyploid Oryza species. Received: 14 February 2000 / Accepted: 13 November 2000  相似文献   

20.
We constructed a fine physical map for a 260-kb rice BAC contig surrounding the waxy locus. In order to identify variable regions within this 260-kb as to the restriction fragments length polymorphisms and copy numbers, sixty overlapping fragments derived from the 260-kb contig were used as probes to compare their corresponding structures among the Oryza species with AA-genome. According to the hybridization patterns, each fragment was classified into four types; true single copy (class 1), single copy with a smear background (class 2), multiple copy without a smear background (class 3), and only a smear background (class 4). Out of 16 single copy (class 1 and class 2) regions obtained in this map, the one site corresponding to wx gave rise to remarkable polymorphisms among AA-genome species in Oryza. In most of the fragments observed as repetitive segments (class 4), we could not find obvious differences in the hybridization pattern. However, interestingly, one site sorted into class-3 showed copy numbers varying among the lines. The lines belonging to O. sativa O. rufipogon, O. meridionalis,and O. longistaminata possessed high-copy numbers of this fragment, whereas only a few bands were detected in the lines from O. glaberrima, O. barthii, and O. glumaepatula. The two variable regions found within the AA-genome species represented genomic dynamisms. Received: 3 February 1999 / Accepted: 22 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号