首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of 125I-insulin to primary cultures of differentiated mouse astrocytes was time-dependent, reaching equilibrium after 2 h at 22 degrees C, with equilibrium binding corresponding to 20.79 fmol/mg of protein, representing approximately 5,000 occupied binding sites/cell. The half-life of 125I-insulin dissociation at 22 degrees C was 2 min, with an initial dissociation rate constant of 4.12 X 10(-2) s-1. Dissociation of bound 125I-insulin was not accelerated significantly in the presence of unlabeled insulin (16.7 microM). Porcine and desoctapeptide insulins competed for specific 125I-insulin binding in a dose-dependent manner, whereas growth hormone, glucagon, and somatostatin did not. For porcine insulin, Scatchard analysis suggested multiple-affinity binding sites (high-affinity Ka = 4.92 X 10(8) M-1; low-affinity Ka = 0.95 X 10(7) M-1). After incubation with insulin (0.5 microM) for 2 h at 37 degrees C, increases above basal values of 254 +/- 23 and 189 +/- 34% for [3H]uridine uptake and incorporation, respectively, were observed. After incubation with insulin (0.5 microM) for 24 h at 37 degrees C, there were increases of 145 +/- 6% for [3H]thymidine uptake and 166 +/- 11% for thymidine incorporation. Basal and stimulated uridine and thymidine uptake and incorporation were inhibited by 50 microM dipyridamole. These studies confirm that mouse astrocytes in vitro possess specific insulin receptors and demonstrate an effect of insulin on pyrimidine nucleoside uptake and incorporation.  相似文献   

2.
Endothelial cells were cultured from bovine fat capillaries, aortae and pulmonary arteries and their interactions with 125I-IGF-I, 125I-MSA (an IGF-II), 125I-insulin and the corresponding unlabeled hormones were evaluated. Each endothelial culture showed similar binding parameters. With 125I-insulin, unlabeled insulin competed with high affinity while IGF-I and MSA were approximately 1% as potent. With 125I-MSA, MSA was greater than or equal to IGF-I in potency and insulin did not compete for binding. Using 125I-IGF-I, IGF-I was greater than or equal to MSA whereas insulin decreased 125I-IGF-I binding by up to 72%. Exposing cells to anti-insulin receptor antibodies inhibited 125I-insulin binding by greater than 90%, did not change 125I-MSA binding, while 125I-IGF-I binding was decreased by 30-44%, suggesting overlapping antigenic determinants between IGF-I and insulin receptors that were not present on MSA receptors. We conclude that cultured capillary and large vessel endothelial cells have distinct receptors for insulin, IGF-I and MSA (IGF-II).  相似文献   

3.
Binding of [125I]monoiodoinsulin to human astrocytoma cells (U-373 MG) was time dependent, reaching equilibrium after 1 h at 22 degrees C with equilibrium binding corresponding to 2.2 fmol/mg protein: this represents approximately 2,000 occupied binding sites per cell. The t1/2 of 125I-insulin dissociation at 22 degrees C was 10 min; the dissociation rate constant of 1.1 X 10(-2) s-1 was unaffected by a high concentration of unlabeled insulin (16.7 microM). Porcine insulin competed for specific 125I-insulin binding in a dose-dependent manner and Scatchard analysis suggested multiple affinity binding sites (higher affinity Ka = 4.4 X 10(8) M-1 and lower affinity Ka = 7.4 X 10(6) M-1). Glucagon and somatostatin did not compete for specific insulin binding. Incubation of cells with insulin (0.5 microM) for 2 h at 37 degrees C increased [2-14C]uridine incorporation into nucleic acid by 62 +/- 2% (n = 3) above basal. Cyclic AMP, in the absence of insulin, also stimulated nucleoside incorporation into nucleic acid [65 +/- 1% (n = 3)] above basal. Preincubation with cyclic AMP followed by insulin had an additive effect on nucleoside incorporation [160 +/- 4% (n = 3) above basal]. Dipyridamole (50 microM), a nucleoside transport inhibitor, blocked both basal and stimulated uridine incorporation. These studies confirm that human astrocytoma cells possess specific insulin receptors with a demonstrable effect of ligand binding on uridine incorporation into nucleic acid.  相似文献   

4.
The existence of insulin receptors in rabbit erythrocytes was studied by evaluating the specific binding of 125I-insulin to erythrocyte membranes. The binding of 125I-insulin was pH, time and temperature dependent. Maximal binding was achieved by incubation for 20 hr at 0 degrees C. The optimum pH was 7.4. Treatment with cations and enzymes enhanced the specific binding except for with trypsin, the treatment which greatly reduced the binding. Unlabeled insulin over a wide range of concentrations competitively inhibited the binding of 125I-insulin, while the binding was little affected by structurally unrelated hormones. Scatchard plot was represented as a concave curve. Binding sites of relatively high affinity (K1 = 0.9 X 10(9) M-1) and low capacity (8.0 X 10(13)/g protein) could be distinguished from those of lower affinity (K2 = 0.8 X 10(7) M-1) and higher capacity (1.8 X 10(15)/g protein). Hill's analysis and dissociation of 125I-insulin from membranes demonstrated the characteristics of negative cooperation between receptor sites. Both incorporation of H3(32)PO4 to erythrocyte membranes and uptake of 45Ca were significantly reduced by the addition of unlabeled insulin. Unlabeled insulin produced no effect on uptake of 45Ca into trypsin-treated erythrocytes. On the basis of these results, it was suggested that rabbit erythrocytes might possess biologically significant insulin receptors located on the cell membranes.  相似文献   

5.
The receptors for the polypeptide hormones, insulin and growth hormone, are located on the cell surface. Since the cytoplasmic microtubules and microfilaments are involved in the mobility and distribution of surface receptors for immunoglobulins and lectins, we investigated the role of these structures in the binding of insulin and human growth hormone to their receptors on cultured human lymphocytes (IM-9). Cells preincubated with microfilament modifiers, cytochalasin A, B, and D (10 mug/ml), had decreased binding of insulin (30%) and human growth hormone (60%) under steady state conditions, which was not reversed by removing the cytochalasins from the medium and was due entirely to a reduced number of receptor sites on the cell surfact. The lost receptors were not detected in the medium, suggesting a redistribution within the cell. The cytochalasins failed to alter the affinity of the hormones for their receptors or the negative cooperativity of the insulin receptor. The anti-microtubule agents (vincristine, vinblastine, colchicine) had no effect on the binding of insulin and growth hormone to their receptors. Deuterium oxide, a stabilizer of microtubules and other proteins, decreased the affinity (40%) of insulin for its receptors under steady state conditions and accelerated moderately the spontaneous dissociation of 125I-insulin from its receptors. Since cytochalasin decreases the number of available insulin and human growth hormone receptor sites, cytochalasin-sensitive microfilamentous structures appear to modulate the exposure of cell surface hormone receptors, while microtubules do not seem to be involved.  相似文献   

6.
Incubation of intact rat adipocytes with physiological concentrations of catecholamines inhibits the specific binding of 125I-insulin and 125I-epidermal growth factor (EGF) by 40 to 70%. Affinity labeling of the alpha subunit of the insulin receptor demonstrates that the inhibition of hormone binding is directly reflective of a specific decrease in the degree of receptor occupancy. The stereospecificity and dose dependency of the binding inhibitions are typical of a classic beta 1-adrenergic receptor response with half-maximal inhibition occurring at 10 nM R-(-)-isoproterenol. Specific alpha-adrenergic receptor agonists and beta-adrenergic receptor antagonists have no effect, while beta-adrenergic receptor antagonists block the inhibition of 125I-insulin and 125I-EGF binding to receptors induced by beta-adrenergic receptor agonists. Further, these effects are mimicked by incubation of adipocytes with dibutyryl cyclic AMP or with 3-isobutyl-1-methylxanthine. The beta-adrenergic inhibition of both 125I-insulin and 125I-EGF binding is very rapid, requiring only 10 min of isoproterenol pretreatment at 37 degrees C for a maximal effect. Removal of isoproterenol by washing the cells in the presence of alprenolol leads to complete reversal of these effects. The inhibition of 125I-EGF binding is temperature dependent whereas the inhibition of 125I-insulin binding is relatively insensitive to the temperature of isoproterenol pretreatment. Scatchard analysis of 125I-insulin and 125I-EGF binding demonstrated that the decrease of insulin receptor-binding activity may be due to a decrease in the apparent number of insulin receptors while the inhibition of EGF receptor binding can be accounted for by a decrease in apparent EGF receptor affinity. The decrease in the insulin receptor-binding activity is physiologically expressed as a dose-dependent decrease of insulin responsiveness in the adipocyte with respect to two known responses, stimulation of insulin-like growth factor II receptor binding and activation of the glucose-transport system. These results demonstrate a beta-adrenergic receptor-mediated cyclic AMP-dependent mechanism for the regulation of insulin and EGF receptors in the rat adipocyte.  相似文献   

7.
Insulin binds to its specific cell surface receptor in cultured human fibroblasts and also stimulates the conversion of glycogen synthase from the glucose-6-phosphate (G-6-P) dependent to the G-6-P independent form. Although these two processes are tightly coupled in most target tissues for insulin action, in the fibroblast a variety of findings question the relationship of these two events to one another. In human fibroblasts the amount of insulin required to displace half of the 125I-insulin bound to the insulin receptor is 4 ng/ml (6.6 X 10(-10)M), but the activation of glycogen synthase is not maximal until 1-10 micrograms/ml with an ED50 of 30 ng/ml insulin. Antibodies directed against the insulin receptor, which activate glycogen synthase in both fat and muscle, do not stimulate the activation of glycogen synthase in the fibroblast. Fab fragments from anti-insulin receptor antibody compete for insulin binding, but do not inhibit the insulin-stimulated rise in independent activity. The insulin-like growth factor, MSA, which is 1% as potent as insulin in stimulating glucose oxidation in rat fat cells and in inhibiting 125I-insulin binding to human fibroblasts, is 25% as potent as insulin in stimulating glycogen synthase. Proinsulin is 2-10% as potent as insulin, but behaves as a "partial agonist" of insulin action in the fibroblast, i.e. proinsulin is able to elicit only 60% of the maximal response of insulin in the glycogen synthase assay, even at high concentrations. Finally, cell lines from patients with clearly defective insulin receptors exhibit normal insulin dose response curves for the activation of glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Insulin receptors could be demonstrated in cultured smooth muscle cells of rat aorta. The specific binding of 125I-insulin was time-, temperature- and pH-dependent. The optimal temperature for our studies was 12 degrees C. At this temperature maximal specific binding was 0.5% of total counts at 120 min incubation. The pH-optimum for the binding process was between 7.5 and 8. Degradation of 125I-insulin at 12 degrees C was 14%, no degradation of binding sites could be measured at this temperature. Dissociation of 125I-insulin was rapid. 50% of the labeled hormone remained associated with the cells. Half-maximal inhibition of 125I-insulin binding was produced by insulin at 4 X 10(-11) mol/l. Scatchard-analysis gave curvilinear plots, that may suggest negative cooperativity. Specificity of binding was studied in competition experiments between 125I-insulin, insulin, proinsulin, insulin-like growth factors and human growth hormone. Half-maximal inhibition of 125I-insulin binding was produced by proinsulin at 2 X 10(-9) mol/l and by insulin-like growth factors at 9 X 10(-9) mol/l. Human growth hormone had no significant effect on the insulin binding.  相似文献   

9.
Insulin-receptor interaction in partially purified preparations of human placental plasma membranes from normal mothers at term of pregnancy has been characterized. 125I-insulin became rapidly and reversibly bound to plasma membranes, being time and temperature dependent. The binding readily appeared at 1.0 ng/ml insulin concentration which falls within the physiological range of peripheral blood. Low levels of unlabeled insulin inhibited binding; 20 ng/ml insulin produced fifty per cent inhibition. Scatchard plots of data from competitive insulin binding proved to be curvilinear. The insulin greater ability for binding observed in this preparation can be explained by the purification degree achieved at the plasma membranes. 125I-insulin was less degraded by partially purified placental plasma membranes than by a microsomal-membrane preparation obtained without differential centrifugation in sucrose linear gradient. All these properties strongly suggest that the insulin-binding sites characterized in the plasma membrane fraction of the placenta represent biologically important receptors to hormone.  相似文献   

10.
Hormone-induced conformational changes in the hepatic insulin receptor   总被引:3,自引:0,他引:3  
The insulin receptor can exist in either a lower or a higher affinity state. Hormone binding alters the equilibrium between the two states of the insulin receptor, favoring the formation of that of higher affinity (Corin, R.E., and Donner, D.B. (1982), J. Biol. Chem. 257, 104-110). After brief or extended incubations with hormone, during which the fraction of higher affinity receptors increased, 125I-insulin was covalently coupled to the alpha subunits of its receptor using disuccinimidyl suberate. Some 125I-insulin remained bound to higher affinity receptors after dissociation of hormone from lower affinity sites. This hormone could also be covalently coupled to the alpha subunit of the receptor. During extended incubations between 125I-insulin and liver plasma membranes, components of the receptor were cleaved to yield degradation products of 120,000 and 23,000 Da. The significance of this process remains undetermined. Unoccupied insulin receptors were cleaved by trypsin to produce fragments of 94,000 and 37,000 Da which remained membrane-bound and could be covalently coupled to 125I-insulin. Trypsin treatment after binding yielded an additional receptor fragment of 64,000 Da. As the incubation time between 125I-insulin and membranes was lengthened, components of the receptor became progressively less sensitive to trypsin. Higher affinity binding sites isolated after release of rapid dissociating insulin were less sensitive to trypsin than were mixtures of higher and lower affinity receptors. These observations suggest that hormone binding produces two conformational changes (alterations of tryptic lability) in the hepatic insulin receptor. The first change is rapid and exposes parts of the receptor to tryptic degradation. The second, slower conformational change renders the receptor less sensitive to trypsin and occurs with the same time course as the increase of receptor affinity mediated by site occupancy.  相似文献   

11.
The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insulin in inhibiting 125I-insulin binding to brain-cortical cells, which corresponds to their relative biological potencies in classical insulin-target cells; no competition was observed with glucagon and nerve growth factor, even at high concentrations. Scatchard analysis of competitive-binding data resulted in curvilinear plots with a high-affinity binding of Ka = 3.6 X 10(8) M-1. Insulin binding to foetal brain-cortical cells differed, however, in two distinct aspects from that to classical insulin-binding cell types. Firstly, dilution of 125I-insulin-bound cells in the presence of unlabelled insulin did not accelerate dissociation of the labelled hormone. Secondly, exposure of brain-cortical cells to insulin before the binding assay enhanced insulin binding, suggesting up-regulation of insulin receptors in response to insulin. In conclusion, foetal-mouse brain-cortical cells bear specific binding sites for insulin. Their insulin receptor shows a marked specificity and affinity for insulin, but differs in at least two properties from most classical insulin receptors. These differences in hormone-receptor interaction could reflect structural differences between insulin receptors on embryonic and differentiated cells.  相似文献   

12.
Inhibition of insulin receptor binding by phorbol esters   总被引:16,自引:0,他引:16  
Phorbol esters inhibit the binding of insulin to its receptors on U-937 monocyte-like and HL-60 promyelocytic leukemia human cell lines. Within 20-30 min, exposure of these cells to 12-O-tetradecanoylphorbol 13-acetate (TPA) at 37 degrees C results in a 50% reduction of the specific binding of 125I-insulin. Half-maximal inhibition occurs at 1 nM TPA. Other tumor-promoting phorbol esters also inhibit 125I-insulin binding in a dose-dependent manner which parallels their known promoting activity in vivo. TPA does not alter the degradation of the hormone nor does it induce any shedding of its receptors in the medium. The effect of phorbol esters is dependent on temperature and cell type. It is less prominent at 22 degrees C than at 37 degrees C. It is reversible within 2 h at 37 degrees C. TPA reduces the binding of insulin predominantly by increasing its dissociation rate. This effect results in an accelerated turnover of the hormone on its receptors.  相似文献   

13.
In this study, we report a procedure for producing antisera that block the binding of 125I-insulin to its receptor. After 2 injections with intact IM-9 cultured human lymphocytes, the antisera from 8 of 17 BalbC mice inhibited the binding of 125I-insulin to its receptor on IM-9 cells by 50% or greater. One antiserum at dilutions of 1:200 and 1:50 inhibited the binding of 125I-insulin by 50% and 80%, respectively. Four lines of evidence indicated that the inhibition of 125I-insulin binding by this antiserum was due to a specific immunoglobulin directed against the insulin receptor. First, removal of the immunoglobulin fraction of the antiserum resulted in a complete loss of its inhibitory activity. Second, the antiserum inhibited the binding of 125I-insulin to its receptor on both human cultured lymphocytes and human placenta particles. Third, the antisera bound solubilized insulin-receptor complexes. Finally, the antiserum did not inhibit the binding of 125I-human growth hormone to its receptor on IM-9 lymphocytes. These studies demonstrate therefore, a simple method for producing antibodies that block the binding of 125I-insulin to the human insulin receptor.  相似文献   

14.
The insulin-receptor cycle was investigated in cultured foetal rat hepatocytes by determining the variations in insulin-binding sites at the cell surface after short exposure to the hormone. Binding of 125I-insulin was measured at 4 degrees C after dissociation of prebound native insulin. Two protocols were used: exchange binding assay and binding after acid treatment; both gave the same results. Cell-surface 125I-insulin-receptor binding decreased sharply (by 40%) during the first 5 min of 10 nM-insulin exposure (t1/2 = 2 min) and remained practically constant thereafter; subsequent removal of the hormone restored the initial binding within 10 min. This fall-rise sequence corresponded to variations in the number of insulin receptors at the cell surface, with no detectable change in receptor affinity. The reversible translocation of insulin receptors from the cell surface to a compartment not accessible to insulin at 4 degrees C was hormone-concentration- and temperature-dependent. SDS/polyacrylamide-gel electrophoresis after cross-linking of bound 125I-insulin to cell-surface proteins with disuccinimidyl suberate showed that these variations were not associated with changes in Mr of binding components, in particular for the major labelled band of Mr 130,000. The insulin-receptor cycle could be repeated after intermittent exposure to insulin. Continuous or intermittent exposure to the hormone gave a similar glycogenic response, contrary to the partial effect of a unique short (5-20 min) exposure. A relationship could be established between the repetitive character of the rapid insulin-receptor cycle and the maximal expression of the biological effect in cultured foetal hepatocytes.  相似文献   

15.
S Gammeltoft  M Fehlmann  E Van Obberghen 《Biochimie》1985,67(10-11):1147-1153
Insulin receptors in rat and human central nervous system have been identified by binding of 125I-insulin on purified synaptic plasma membranes; affinity labelling of receptors by chemical cross-linking 125I-insulin; or phosphorylation of receptors with [gamma-32P]ATP. Brain insulin receptors showed significant differences in their binding characteristics and subunit structure when compared with receptors in other tissues like adipose and liver cells: absence of negatively cooperative interactions; a distinct binding specificity i.e. porcine proinsulin, coypu insulin and insulin-like growth factor I and II showed 2-5 times higher binding affinity in brain than in other cell types; a smaller molecular size of the brain receptor alpha-subunit than in other tissues (Mr approximately 115,000 instead of 130,000). In contrast, the size (Mr approximately 94,000) and function of the insulin receptor beta-subunit kinase was identical with that described in other cells. We conclude, that insulin receptors in mammalian brain represent a receptor subtype which may mediate growth rather than metabolic activity of insulin.  相似文献   

16.
The insulin receptor is a tyrosine-specific protein kinase. Upon binding of the hormone, the kinase is activated resulting in autophosphorylation of the receptor. This kinase activity has been postulated to be an early step in the transmembrane signaling produced by insulin. To evaluate the physiologic relevance of receptor phosphorylation, we have studied insulin binding and autophosphorylation properties using cells from an individual with a variant of the Type A syndrome of severe insulin resistance and acanthosis nigricans. Erythrocytes and cultured fibroblasts from this individual exhibited normal or near normal 125I-insulin binding. Receptors extracted from erythrocytes with Triton X-100 also exhibited normal 125I-insulin binding and competition curves. Despite this, receptors extracted from both erythrocytes and fibroblasts showed a 50% decrease in insulin-stimulated autophosphorylation. Partially purified receptors from the patient's fibroblasts also exhibited a 40% decrease in their ability to phosphorylate exogenous substrates. These data suggest that the insulin resistance in this syndrome is due to a genetic abnormality which impairs insulin receptor phosphorylation and kinase activity and further support the possible role of receptor phosphorylation and kinase activity in insulin action.  相似文献   

17.
The status of insulin-receptor interactions in a variety of insulin-resistant states is reviewed. Utilizing large adipocytes from adult rats and small fat cells from young rats, we have conducted a series of in vitro experiments in an attempt to determine the cellular alteration(s) responsible for the insulin resistance associated with obesity. Stimulation of glucose oxidation by insulin is reduced in large cells. Studies using a mimicker of insulin action, spermine, as well as measurements of 125I-insulin binding to large and small cells indicate that receptor number and affinity are not responsible for hormone resistance. Furthermore, when rapid and direct measurements of sugar uptake were made, insulin stimulation was virtually identical in both cell types. These findings indicate that large adipocytes have an efficient insulin-responsive D-glucose transport system and suggest that the apparent hormone resistance may be due to alterations in intracellular glucose metabolism. It has been proposed that altered insulin-receptor interaction underlies the insulin resistance of human obesity. We have investigated this particular aspect of insulin action by 125I-insulin binding studies. Similar numbers of insulin receptors per cell and affinity for insulin were observed in adipocytes obtained from normal weight subjects and morbidly obese patients. Thus, the initial step in insulin action is unaltered in human obesity.  相似文献   

18.
The Daudi line of human lymphoblastoid cells requires insulin and transferrin for growth in serum-free medium and is highly sensitive to the inhibitory effect of human leukocyte interferon (IFN-alpha) on cell proliferation. A variant subline of Daudi cells, which is resistant to the antiproliferative action of IFN-alpha, also has been grown in serum-free medium containing insulin and transferrin. The proliferation of IFN-sensitive and -resistant Daudi cells is dependent on the occupancy of insulin receptors, with optimal cell proliferation observed at high receptor occupancy (nearly 100%). No evidence was found for receptors for insulin-like growth factor I on Daudi cells. IFN treatment of IFN-sensitive cells decreased the capacity of the cells to bind 125I-insulin. The altered binding capacity was due to diminished specific, lower affinity insulin binding, as detected at high 125I-insulin concentrations. Higher affinity insulin binding was not altered by IFN. Insulin binding was also reduced in detergent-solubilized extracts from IFN-treated sensitive Daudi cells and the magnitude of the effect was comparable to that observed in intact cells. This indicates that the total number of insulin binding sites (surface + internal) is decreased in IFN-treated sensitive cells. Insulin binding to IFN-sensitive cells decreased linearly with time between 6 and 48 h from the addition of IFN. The effect on lower affinity insulin binding developed more rapidly than the inhibitory effect of IFN on cell proliferation. The insulin-binding capacity of Daudi cells resistant to the antiproliferative effect of IFN was unaffected by IFN, despite the fact that these cells contain as many cell surface IFN receptors as sensitive cells. These observations raise the possibility that lower affinity insulin binding is important in the growth-promoting actions of insulin.  相似文献   

19.
By studying the dissociation of 125I-instulin from its receptors in the absence and phe negatively cooperative type for the insulin receptors. In the present study we extend oy purified mouse and rat liver membranes as well as in human circulating monocytes and human cultured lymphocytes demonstrated negative cooperativity that was extraordinarily simn membranes more slowly than it does from its receptors on whole cells. The dissociaty a small percentage of the receptor sites (1 to 5%), are sufficient to accelerate dissociation of hormone from receptor. At these insulin concentrations insulin is entirely monomeric, and in fact at higher concentrations of insulin (greater than 10(-7) M) where insulin dimers predominate, the cooperativity effect is progressively lost. The dissociation rate of 125I-insulin alone (that is at very low fractional saturation of receptors) was markedly accelerated by dripping the pH from 8.0 to 5.0, whereas the dissociation of 125I-insulin at high receptor occupancy was only slightly accelerated by the fall in pH. The dissociation rate was directly related to temperature, but the dissociation rate of 125I-insulin at low receptor occupancy was much more affected by reduction in temperature and showed a sharp transition at 21 degrees. Urea at concentrations as low as 1 M produced a marked acceleration of 125I-insulin dissociation. Divalent cations (calcium and magnesium) appear to stabilize the insulin-receptor interaction, since higher degrees of receptor occupancy were required to achieve a given rate of dissociation of 125I-insulin. These data make it likely that the insulin receptors exist as oligomeric structures or clusters in the plasma membrane. Insulin receptor sites appear to switch from a "slow dissociating" state to a "fast dissociating" state when their occupancy increases; the proportion of sites in each state is a function of occupancy of the receptor sites by the insulin monomer as well as of the physiochemical environment. Other models which could explain apparent negative cooperativity besides site-site interactions, i.e. polymerization of the hormone, steric or electrostatic hindrance due to ligand-ligand interactions, or unstirred (Noyes-Whitney) layers are considered unlikely in the case of insulin receptors on both experimental and theoretical grounds.  相似文献   

20.
125I-insulin (10 fmoles) binding plus internalization (BI) to a clonal capillary endothelial (CE) cell line reached to a steady state after 20 min. Acid-washed fraction accounted for nearly half of the total specifically-bound hormone. Dissociation constants (Kd) for insulin-surface receptor in acid-extractable fraction were 0.04 nM (high affinity) and 4.7 nM (low affinity) with a total number of 210,000 high affinity receptors per cell. When 125I-labeled IGF-1 (15 fmoles) was incubated similarly, BI reached only a quasi-equilibrium by 6 min and continued to increase thereafter. 2-Deoxyglucose transport in these cells was stimulated by insulin whereas IGF-1 inhibited its entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号