首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
 The autotrophic ciliate Mesodinium rubrum Lohmann was observed during winter and spring in saline lakes ranging in salinity from 2 to 78‰ in the Vestfold Hills, Antarctica. The ciliate remained active during winter, and contained chlorophyll even though the level of light available for photosynthesis was minimal. No evidence of encystment as a means of survival during winter was observed. A seasonal study in one of the lakes, Ace Lake, revealed that M. rubrum was present throughout the year at abundances ranging from 1×104 to 3.5×105 cells l-1. During the winter period, when little light penetrated the lake’s ice cover, cells were most common immediately under the ice at 2 m, where cell numbers were typically 8×104 cells l-1. Received: 3 January 1996/Accepted: 21 April 1996  相似文献   

2.
Seasonal cycle of the microbial plankton in Crooked Lake,Antarctica   总被引:3,自引:0,他引:3  
Summary Changes in the abundance of the components of the microbial plankton between July 1990 and March 1991 in Crooked Lake, one of the largest and deepest freshwater lakes in Antarctica, are described. Chlorophyll a concentration is low (0.2–0.4g·1–1) and there is no discernable spring increase. The phytoplankton is largely dominated by flagellates. Bacterioplankton exhibits a seasonal pattern of abundance ranging from 1.0 × 108·1–1 in July to 3.25 × 108·1–1 in September. Changes in bacterial abundance probably relate to temperature and grazing by heterotrophic and mixotrophic flagellates. Total flagellated protozoan concentrations ranged between 25–136 × 102·l–1. Autotrophic and heterotrophic flagellate abundances were coupled and peaks in their abundance oscillated with peaks in bacterioplankton concentration. Four species of ciliated protozoa, dominated by oligotrichs, particularly the plastidic Strombidium, inhabit the lake. The plankton is characterised by the presence of floes which act as loci for bacteria, flagellates and amoebae and feeding sites for the ciliates and the two sparce metazoan components of the plankton. Crooked Lake is extremely oligotrophic but nonetheless supports a plankton community with a low species diversity and simple trophodynamics.  相似文献   

3.
 Biomass, production and heterotrophic activity of bacterioplankton were determined for two weeks in the Great Astrolabe Reef lagoon, Fiji. Bacterial and Bacterial activities were distributed homogeneously throughout the water column (20 to 40 m deep) and varied little from site to site inside the lagoon. Bacterioplankton biomass and production also varied little over a diel period with coefficients of variation of 9 and 22%, respectively. On average, over the whole study, bacterial abundance was 0.77×109 cells l-1 and bacterial production averaged 0.36 μg-at. C l-1 d-1. Bacterial abundance and production were greater in the lagoon than in oceanic waters. Attachment to particles seems to provide an advantage for bacterioplankton growth because specific growth rates for attached bacterioplankton were, on average, significantly greater than that of the free community. Growth efficiency, determined by correlating the net increase of bacterial biomass and the net decrease of dissolved organic carbon (DOC) in dilution cultures, was very low (average 6.6%). Using carbon growth efficiency and bacterial production rates, heterotrophic activity was estimated to average 5.4 μg-at. C l-1 d-1. The turn-over rate of DOC (average 114 μg-at. C l-1) due to bacterial consumption was estimated to be 0.048 d-1 during the period of study. Accepted: 25 July 1998  相似文献   

4.
 The zooplankton of the under-shelf-ice ecosystem at White Island (78°10′ S, 167°30′ E), McMurdo Sound, Antarctica was investigated during December 1976 and January 1977. The water column was sampled through a hole in the McMurdo Ice Shelf over a water depth of 67 m. Seawater temperatures under the ice shelf ranged from −1.91 to 1.96°C. Dissolved oxygen levels ranged from 5.0–6.05 ml l-1 in early December to 4.65–4.8 ml l-1 in late January. Current speeds of up to 0.13 m s-1 were recorded at a depth of 50 m and a predominantly northward flow was detected. Light levels under the shelf ice were low with less than 1% of the incident light being transmitted to a depth of 3 m. No chlorophyll a was detected within the water column throughout the investigation. Mean zooplankton biomass values in the water column ranged from 12 to 447 mg wet weight m-3 and were similar to values recorded elsewhere from Antarctic inshore waters, but were very much higher than those recorded from under seasonal sea ice in McMurdo Sound. Thirty-two zooplankton species were recorded including 1 ostracod, 21 copepods (10 calanoids, 3 cyclopoids and 8 harpacticoids), 4 amphipods, 2 euphausiids, a chaetognath and 3 pteropods. Larvae of polychaetes and fish were found on some occasions. The species composition in general was similar to that recorded from McMurdo Sound and other Antarctic inshore localities. Among the Copepoda, however, there were a number of species, especially among the Harpacticoidea, that have not been found previously in McMurdo Sound and the Ross Sea, but that are known to be associated with ice in other localities in Antarctica. Two recently described species are known only from White Island. They were present in the water column but were most abundant in the surface water of the tide crack where they were the most abundant zooplankters. The tide crack, which probably is an extension of the under-ice habitat, is apparently a significant nursery area for amphipods and copepod species. Received: 23 November 1994/Accepted 7 May 1995  相似文献   

5.
Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44°N, 144°E), during the late winter phase of ice community development (February–March 1992). Bacterial abundance averaged 6 and 1 × 105 cells ml−1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (<1 h) ingested fluorescently labeled bacteria (FLB) in their food vacuoles, were largely dominated by flagellates, mainly cryothecomonad-type and chrysomonad-like cells and small dinoflagellates of the genus Gymnodinium. Bacterivorous ciliates included mainly the prostomatid Urotricha sp., the scuticociliates Uronema and Cyclidium, the choreotrichs Lohmaniella oviformis and Strobilidium, and the hypotrich Euplotes sp. Protist abundance averaged 4 × 103 and 8.1 cells ml−1 in the ice-brine and 0.3 × 103 and 1.2 cells ml−1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator–prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2–67 nl protozoa−1 h−1) and ingestion (<1–26 particles protozoa−1 h−1) rates were likely to be minimal estimates and grazing impact may have been higher on occasion. Indications for the dependence of ``bacterivorous protists' on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice-brine biota and water column at the southern limit of sea ice in the northern hemisphere. Received: 30 July 1998; Accepted: 18 November 1998  相似文献   

6.
A detailed survey was undertaken of the microbial communities of 16 saline lakes in the Vestfold Hills (Princess Elizabeth Land, eastern Antarctica), which ranged in salinity from slightly brackish (4–5‰) to hypersaline (maximum: 174‰). Temperatures at comparable sampling depths in the lakes ranged from −12.2°C to +10.5°C. Ranges in the abundances of bacteria, heterotrophic nanoflagellates (HNAN) and phototrophic nanoflagellates (PNAN) were 1.40 × 107 l−1–1.58 × 1010 l−1, 4.83 × 104 l−1–1.70 × 107 l−1 and 0–1.02 × 107 l−1, respectively. There was considerable variation across the salinity spectrum, though in the case of bacteria and PNAN significantly higher concentrations of cells were seen in two of the most saline lakes. The autotrophic ciliate Mesodinium rubrum occurred in all but five of the lakes and was found at salinity levels up to 108‰. Heterotrophic ciliates were generally scarce. Dinoflagellates, particularly Gonyaulax c.f. tamarensis, Gyrodinium lachryma and Gymnodinium sp., occurred in the majority of the lakes. On the basis of chlorophyll a concentrations, nutrient levels and microplankton concentrations the lakes spanned the spectrum from ultra-oligotrophic to oligo/mesotrophic. The most saline lakes had much reduced species diversity compared with the less saline environments. Isolation from the marine environment has led to nutrient depletion, simplification and a truncated trophic structure. Received: 19 September 1996 / Accepted: 13 January 1997  相似文献   

7.
1. The temporal abundance and composition of the plankton of a continental Antarctic lake (Lake Druzhby) situated in the Vestfold Hills, Eastern Antarctica was investigated from December 1992 to December 1993. The system was dominated by microbial plankton (cyanobacteria, heterotrophic bacteria and protozoans) with few metazoans. 2. Chlorophyll a concentrations ranged between 0.15 and 1.1 μg l–1 and showed highest levels from late winter to spring. 3. Heterotrophic bacteria ranged between 75 and 250 × 106 l–1 with highest abundances in late winter/spring. Mean bacterial biovolumes showed considerable seasonal variation (0.05–0.31 μm3). Largest biovolumes occurred in summer and this was the time of highest community biomass. 4. Heterotrophic nanoflagellates reached highest abundances in late summer (maximum 14 × 105 l–1). Their mean biovolume also exhibited considerable seasonal variation, ranging between 1.77 and 27.0 μm3, with largest size resulting in community biomass peaking in early summer. Ciliated protozoa were poorly represented and sparse. Phototrophic nanoflagellates were sparse in this lake; instead the phototrophic plankton was dominated by a small rod-shaped cyanobacterium which constituted the largest carbon pool in the system. It was common throughout the year, its biomass peaking in autumn. Its presence is discussed in relation to lake morphometry and light climate. 5. Heterotrophic flagellate grazing rates ranged from 6.78 bacteria cell–1 day–1 at 2 °C to 11.8 bacteria cell–1 day–1 at 4 °C. They remove around 2% of the bacterial carbon pool per day during summer and winter. 6. Nutrient levels were low and recorded in pulses. Dissolved and particulate organic carbon were also low, usually less than 3 mg l–1 and 600 μg l–1, respectively. The carbon pools were derived from autochthonous sources. This lake system is driven by bottom-up forces and lacks top-down control, which fits into the picture currently seen for continental Antarctic lakes.  相似文献   

8.
Seasonal dynamics of all major protozoan groups were investigated in the plankton of the River Danube, upstream of Budapest (Hungary), by bi-weekly sampling over a 1-year long period. Sixty-one heterotrophic flagellate, 14 naked amoeba, 50 testate amoeba, 4 heliozoan and 83 ciliate morphospecies were identified. The estimated abundance ranges of major groups throughout the year were as follows: heterotrophic flagellates, 0.27–7.8×106 ind. l?1; naked amoebae, max. 3300 ind. l?1; testaceans, max. 1600 ind. l?1; heliozoans, max. 8500 ind. l?1; ciliates, 132–34,000 ind. l?1. In terms of biovolume, heterotrophic flagellates dominated throughout the year (max. 0.58 mm3 l?1), and ciliates only exceeded their biovolume in summer (max. 0.76 mm3 l?1). Naked amoeba and heliozoan biovolume was about one, and testacean biovolume 1–3, orders of magnitude lower than that of ciliates. In winter, flagellates, mainly chrysomonads, had the highest biomass, whilst ciliates were dominated by peritrichs. In 2005 from April to July a long spring/summer peak occurred for all protozoan groups. Beside chrysomonads typical flagellates were choanoflagellates, bicosoecids and abundant microflagellates (large chrysomonads and Collodictyon). Most abundant ciliates were oligotrichs, while Phascolodon, Urotricha, Vorticella, haptorids, Suctoria, Climacostomum and Stokesia also contributed significantly to biovolume during rapid succession processes. In October and November a second high protozoan peak occurred, with flagellate dominance, and slightly different taxonomic composition.  相似文献   

9.
Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9 × 103 cells ml–1) and ciliates (6.1 cells ml–1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9 × 106 bacteria 1–1h–1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria. Correspondence: C. Amblard.  相似文献   

10.
We tested the hypothesis that grazing on bacteria would varybetween lakes with differing plankton community structures.Paul and Tuesday lakes (Gogebic County, MI) are respectivelydominated by piscivorous and planktivorous fish. Consequently,zooplankton in Paul are primarily large daphnids, while zooplanktonin Tuesday are primarily small cladocerans and copepods. Wemeasured flagellate grazing on bacteria using a fluorescentminicell method, while cladoceran grazing was estimated fromthe relationship between body length and filtering rate. Wepredicted that cladoceran grazing on bacteria would be higherin Paul, and flagellate grazing would be higher in Tuesday.Cladoceran grazing on bacteria was important in both lakes contraryto our initial expectation. Large populations of the small cladoceran,Bosmina longirostris, in Tuesday exerted a grazing pressure(0.18–35x106 bacteria 1–1 h–1) approximatelyequal to that of the large cladoceran, Daphnia pulex, in Paul(0.34–30x106 bacteria 1–1 h–1). Flagellategrazing was higher in Tuesday as predicted (range: Paul, 0.1–6x106bacteria 1–1 h–1; Tuesday, 0.2–20x106 bacteria1–1 h–1). However, there was not a simple relationshipbetween total abundance of flagellates and total grazing rates.High community grazing by flagellates occurred when attachedchoanoflagellates were present. These flagellates had higheringestion rates than free forms. We find no clear evidence thatdifferences in food-web structure between the two lakes influencethe process of grazing on bacteria. Instead, our results emphasizethe significance of cladocerans and attached flagellates asconsumers of bacteria in freshwater ecosystems.  相似文献   

11.
Standing stocks of ciliate plankton and its prey candidates, both picoplankton and nanoplankton, were investigated in spring in the East China Sea. The former was 1.36 × 105–1.54 × 108 μm3 l−1 in biovolume, and the latter was 5.33 × 106–1.11 × 108 μm3 l−1. The biovolume ratio of ciliate plankton to prey candidates ranged from 1.31 × 10−2 to 2.00 × 100; it was larger in abundant prey conditions and smaller in sparse preys. Making some plausible assumptions about physiological activity on both organisms, every ratio meet the quantitative restriction that prey production should be equal to or larger than ciliate consumption. However, prey candidates would be so sparsely distributed that ciliate plankton could not capture sufficient prey organisms in its random filter-feeding manner. Even though planktonic ciliates must have some extraordinary mechanisms to capture preys efficiently, this quantitative imbalance might be one of the reasons for decreasing ciliate/prey ratio in sparse prey conditions. Handling editor: K. Martens  相似文献   

12.
Ciliate and bacterial densities and their link with eutrophication were studied in fourteen shallow lakes in northwest Spain. Total phosphorus (TP) in these lakes varied between 30 μg l−1 and 925 μg l−1 and chlorophyll a concentration (chla) between 0.5 μg l−1 and 107 μg l−1. Bacterial abundance ranged from 1 × 106 to 14 × 106 cells ml−1, while ciliate abundance ranged from 0.6 cells ml−1 to 229 cells ml−1. Lakes were classified into three trophic types from their TP and chla concentrations. Bacterial abundance was significantly correlated with trophic type, as well as with TP and with chla separately, whereas ciliate abundance was only correlated with chla. No significant relationship could be established between bacterial and ciliate abundance across the trophic gradient. A general pattern was observed in the ratios of bacterial abundance to TP and chla concentrations, of decreasing ratios with increases in the nutrient loading. This pattern was not found for ciliates. The dominant zooplankton group in 13 of the 14 lakes studied was Rotifera, which accounted for a mean of 71% of total zooplankton abundance (41% of zooplankton biomass). The positive correlation between bacteria and ciliates with this group, and the absence of any relationship with Cladocera suggest that top down control by cladocerans was weaker in our lakes than previously shown in northern European shallow lakes. Rotifers could be important predators of bacteria in the high-nutrient lakes of our study. Higher slopes of regressions on bacterial abundance towards the hypertrophic range indicate that top-down control was weaker in our lakes than in northern European shallow lakes.  相似文献   

13.
Phage abundance and infection of bacterioplankton were studied from March to November 2003 in the Sep Reservoir (Massif Central, France), together with temperature, chlorophyll, bacteria (abundance and production), and heterotrophic nanoflagellates (abundance and potential bacterivory). Virus abundance (VA) ranged from 0.6 to 13 × 1010 viruses l−1, exceeding bacterial abundance (BA) approximately sixfold on average. In terms of carbon, viruses corresponded to up to 25% of bacterial biomass. A multiple regression model indicated that BA was the best predictor for VA (R2 = 0.75). The frequency of infected bacteria (estimated from the percentage of visibly infected cells) varied from 1% to 32% and was best explained by a combination of temperature (R2 = 0.20) and bacterial production (R2 = 0.25). Viruses and flagellates contributed about equally to bacterial mortality. Both factors destroyed 55% of bacterial production, with a shift from phage bacteriolysis in early spring to protistan bacterivory in late summer. The vertical differences in most of the biological variables were not significant, contrasting with the seasonal differences (i.e., spring vs. summer-autumn). All biological variables under study were indeed significantly coupled to temperature. We regarded this to be the consequence of the enhanced discharge of the reservoir in 2003 (compared to previous years). This substantially weakened the stability and the thermal inertia of the water column, thereby establishing temperature as a stronger forcing factor in setting the conditions for optimal metabolic activity of microbial communities.  相似文献   

14.
From November 1992 to February 1995 a quantitative and qualitative phytoplankton study was conducted at a permanent station (Kerfix) southwest off the Kerguelen Islands, in the vicinity of the Polar Front (50°40′S–68°25′E). Phytoplankton populations are low in this area both during summers and winters. They consist, in order of decreasing cell abundance, of pico- and nanoflagellates (1.5–20 μm), coccolithophorids (<10 μm), diatoms (5–80 μm) and dinoflagellates (6–60 μm). Flagellates form the dominant group throughout the year and attain the highest summer average of 3.0 × 105 cells l−1. Next in abundance year-round are coccolithophorids with the dominant Emiliania huxleyi (highest summer 1992 average 1.9 × 105 cells l−1), diatoms (summer 1992 average 1.0 × 105 cells l−1) and dinoflagellates (average 3.8 × 104 cells l−1). Winter mean numbers of flagellates and picoplankton do not exceed 8.4 × 104 cells l−1; those of the three remaining algal groups together attain 2 × 104 cells l−1. Summer peaks of diatoms and dinoflagellates are mainly due to the larger size species (>20 μm). The latter group contributes most to the total cell carbon biomass throughout the year. Dominant diatoms during summer seasons include: Fragilariopsis kerguelensis, Thalassionema nitzschioides, Chaetoceros dichaeta, C. atlanticus, Pseudonitzschia heimii, and P. barkleyi/lineola. This diatom dominance structure changes from summer to summer with only F. kerguelensis and T. nitzschioides retaining their first and second positions. Any one of the co-dominant species might be absent during some summer period. The variable diatom community structure may be due to southward meandering of the Polar Front bringing “warmer” species from the north, and to the mixing of the water masses in this area. The entire community structure characterized both during summer and winters by the dominance of flagellates can be related to deep mixing (ca. 40–200 m) of the water column as the probable controlling factor. Received: 13 November 1997 / Accepted: 11 May 1998  相似文献   

15.
 Diatom composition and biomass were investigated in the nearshore water (<30 m in depth) of Maxwell Bay, Antarctica during the 1992/1993 austral summer. Epiphytic or epilithic diatoms such as Fragilaria striatula, Achnanthes brevipes var. angustata and Licmophora spp. dominated the water column microalgal populations. Within the bay, diatom biomass in surface water was several times higher at the nearshore (2.4–14 μg C l-1) than at the offshore stations (>100 m) (1.2–3.2 μg C l-1) with a dramatic decrease towards the bay mouth. Benthic forms accounted for >90% of diatom carbon in all nearshore stations, while in the offshore stations planktonic forms such as Thalassiosira antarctica predominated (50–>90%). Microscopic examination revealed that many of these diatoms have become detached from a variety of macroalgae growing in the intertidal and shallow subtidal bottoms. Epiphytic diatoms persistently dominated during a 19-day period in the water column at a fixed nearshore station, and the biomass of these diatoms fluctuated from 0.86 to 53 μg C l-1. A positive correlation between diatom biomass and wind speed strongly suggests that wind-driven resuspension of benthic forms is the major mechanism increasing diatom biomass in the water column. Received: 28 April 1995/Accepted: 1 April 1996  相似文献   

16.
Summary The plankton of twelve freshwater and slightly saline lakes in the Vestfold Hills, Antarctica was sampled in February 1991. All of the lakes are oligotrophic. The chlorophyll a concentrations in the lakes ranged from 0.10–2.69 g · 1–1. The majority of the phytoplankton were flagellates or picoplanktonic cyanobacteria with the species composition varying between the lakes. Cyanobacteria were found in five of the lakes. Five to 6 species of ciliated protozoa occurred, among them oligotrichs, including the mixotrophic species Strombidium viride. The concentrations of protists and bacteria were an order to several orders of magnitude lower than reported from lower latitude oligotrophic lakes. Low species diversity and low numbers in the plankton characterise these eastern Antarctica lakes which reflects their low nutrient status and isolation.  相似文献   

17.
Variations of phytoplankton assemblages were studied in November–December 2001, in surface waters of the Southern Ocean along a transect between the Sub-Antarctic Zone (SAZ) and the Seasonal Ice Zone (SIZ; 46.9°–64.9°S; 142°–143°E; CLIVAR-SR3 cruise). Two regions had characteristic but different phytoplankton assemblages. Nanoflagellates(<20 μm) and pico-plankton (∼2 μm) occurred in similar concentrations along the transect, but were dominant in the SAZ, Sub-Antarctic Front (SAF), Polar Front Zone (PFZ) and the Inter-Polar Front Zone (IPFZ), (46.9°–56.9°S). Along the entire transect their average cell numbers in the upper 70 m of water column, varied from 3 × 105 to 1.1 × 106 cells l−1. Larger cells (>20 μm), diatoms and dinoflagellates, were more abundant in the Antarctic Zone-South (AZ-S) and the SIZ, (60.9°–64.9°S). In AZ-S and SIZ diatoms ranged between 2.7 × 105 and 1.2 × 106 cells l−1, dinoflagellates from 3.1 × 104 to 1.02 × 105 cells l−1. A diatom bloom was in progress in the AZ-S showing a peak of 1.8 × 106 cells l−1. Diatoms were dominated by Pseudo-nitzschia spp., Fragilariopsis spp., and Chaetoceros spp. Pseudo-nitzschia spp. outnumbered other diatoms in the AZ-S. Fragilaropsis spp. were most numerous in the SIZ. Dinoflagellates contained autotrophs (e.g. Prorocentrum) and heterotrophs (Gyrodinium/Gymnodinium, Protoperidinium). Diatoms and dinoflagellates contributed most to the cellular carbon: 11–25 and 17–124 μg C l−1, respectively. Small cells dominated in the northern region characterized by the lowest N-uptake and new production of the transect. Larger diatom cells were prevalent in the southern area with higher values of N-uptake and new production. Diatom and nanoflagellate cellular carbon contents were highly correlated with one another, with primary production, and productivity related parameters. They contributed up to 75% to the total autotrophic C biomass. Diatom carbon content was significantly correlated to nitrate uptake and particle export, but not to ammonium uptake, while flagellate carbon was well correlated to ammonium uptake, but not to export. Diatoms have contributed highly to particle export along the latitudinal transect, while flagellates played a minor role in the export.  相似文献   

18.
1. The plankton dynamics of Ace Lake, a saline, meromictic basin in the Vestfold Hills, eastern Antarctica was studied between December 1995 and February 1997. 2. The lake supported two distinct plankton communities; an aerobic microbial community in the upper oxygenated mixolimnion and an anaerobic microbial community in the lower anoxic monimolimnion. 3. Phytoplankton development was limited by nitrogen availability. Soluble reactive phosphorus was never limiting. Chlorophyll a concentrations in the mixolimnion ranged between 0.3 and 4.4 μg L??1 during the study period and a deep chlorophyll maximum persisted throughout the year below the chemo/oxycline. 4. Bacterioplankton abundance showed considerable seasonal variation related to light and substrate availability. Autotrophic bacterial abundance ranged between 0.02 and 8.94 × 108 L??1 and heterotrophic bacterial abundance between 1.26 and 72.8 × 108 L??1 throughout the water column. 5. The mixolimnion phytoplankton was dominated by phytoflagellates, in particular Pyramimonas gelidicola. P. gelidicola remained active for most of the year by virtue of its mixotrophic behaviour. Photosynthetic dinoflagellates occurred during the austral summer, but the entire population encysted for the winter. 6. Two communities of heterotrophic flagellates were apparent; a community living in the upper monimolimnion and a community living in the aerobic mixolimnion. Both exhibited different seasonal dynamics. 7. The ciliate community was dominated by the autotroph Mesodinium rubrum. The abundance of M. rubrum peaked in summer. A proportion of the population encysted during winter. Only one other ciliate, Euplotes sp., occurred regularly. 8. Two species of Metazoa occurred in the mixolimnion; a calanoid copepod (Paralabidocera antarctica) and a rotifer (Notholca sp.). However, there was no evidence of grazing pressure on the microbial community. In common with most other Antarctic lakes, Ace Lake appears to be driven by ‘bottom-up’ forces.  相似文献   

19.
The plankton of a large oligotrophic freshwater Antarctic lake   总被引:4,自引:0,他引:4  
The planktonic community of Crooked Lake, a large freshwaterlake in the Vestfold Hills, Antarctica was investigated duringthe austral summer in 1990. Very low levels of chlorophyll aranging between mean values of 0 29 and 1.8 µl1were recorded. The phytoplankton was largely made up of colouredflagellates, including single species of Chlamydomonas, Ochromonasand Pendimum, which occurred in low concentrations (23.8x 102–47.3x102 l1). Heterotrophic colourless flagellates, includingParaphysomonas vestita, were also relatively sparse (2.1x 102–21.3x102l1). Ciliated protozoans were particularly poorly represented.Only three species occurred reaching densities of 10011,and among them the mixotrophic species Strombidium vinde wasthe most common. A single species of heliozoan Actinosphaeriumand relatively large numbers of naked amoebae were the sarcodinerepresentatives The protistan community and the bacteria wereconcentrated into microbial consortia associated with floesof paniculate organic matter probably derived from the benthicalgal mat. Of the two microcrustacean zooplankters recordedfrom the lake only Daphniopsis studeri was found breeding inthe plankton in very low numbers. The behavioural and physiologicaladaptations of the organisms inhabiting this extremely oligotrophicenvironment are discussed.  相似文献   

20.
The objective of this study was to analyze the flux of biomass through the communities of bacteria and phagotrophic protists in the cold and warm conditions occurring seasonally in Butrón River. Bacterial and heterotrophic protistan (flagellate and ciliate) abundance was determined by epifluorescence direct counts; protistan grazing on planktonic bacteria was measured from fluorescently labeled bacteria uptake rates; and the estimate of bacterial secondary production was obtained from [3H]thymidine incorporation rates. The abundance of bacterial, flagellate, and ciliate communities was similar during cold and warm situations. However, we observed that estimates of dynamic parameters, i.e., secondary bacterial production and protistan grazing, in both situations were noticeably different. In the warm situation, grazing rates of flagellates and ciliates (bacteria per protist per hour) were, respectively, 7 times and 18 times higher than those determined in the cold situation, and the grazing rates of the protistan communities (bacteria per protists present in 1 ml of water per hour) increased up to 5 times in the case of flagellates and 42 times in the case of ciliates. Estimates of bacterial secondary production were also higher during the warm situation, showing a ninefold increase. The percentage of bacterial production preyed upon by flagellates or ciliates was not significantly different between the two conditions. These results showed that in the different conditions of a system, the flux of biomass between the trophic levels may be quite different although this process may not be reflected in the abundance of each community of bacteria, flagellates, and ciliates. Offprint requests to: J. Iriberri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号