首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract: The rat N -methyl- d -aspartate (NMDA) glutamate receptor subunit NR1-1a was transiently expressed in COS cells using the technique of electroporation, which was fivefold more efficient than the calcium phosphate precipitation method of transfection. The glycine site antagonist 5,7-[3H]dichlorokynurenic acid labeled a single high-affinity site ( K D = 29.6 ± 6 n M ; B max = 19.4 ± 1.6 pmol/mg of protein) in membranes derived from COS cells electroporated with NR1-1a. In contrast to previous reports using transiently transfected human embryonic kidney 293 cells, binding of the noncompetitive antagonist (+)-5-[3H]methyl-10,11-dihydro-5 H -dibenzo[ a,d ]-cyclohepten-5,10-imine ([3H]MK-801) was not detected in NR1-1a-transfected COS cells. Although immunofluorescent labeling of electroporated COS cells demonstrated that the NR1-1a protein appears to be associated with the cell membrane, neither NMDA nor glutamate effected an increase in intracellular calcium concentration in fura-2-loaded cells, suggesting that homomeric NR1-1a receptors do not act as functional ligand-gated ion channels. Therefore, COS cells appear to differ from Xenopus oocytes with respect to the transient expression of functional homomeric NR1 receptors. Although expression of NR1-1a is sufficient to reconstitute a glycine binding site with wild-type affinity for antagonists in COS cells, recombinant homomeric NR1-1a receptors do not display properties that are characteristic of native NMDA receptors, such as permeability to Ca2+ and channel occupancy by MK-801, when expressed in this mammalian cell line.  相似文献   

2.
Calcium-permeable N-methyl-d-aspartate (NMDA) receptors are tetrameric cation channels composed of glycine-binding NR1 and glutamate-binding NR2 subunits, which require binding of both glutamate and glycine for efficient channel gating. In contrast, receptors assembled from NR1 and NR3 subunits function as calcium-impermeable excitatory glycine receptors that respond to agonist application only with low efficacy. Here, we show that antagonists of and substitutions within the glycine-binding site of NR1 potentiate NR1/NR3 receptor function up to 25-fold, but inhibition or mutation of the NR3 glycine binding site reduces or abolishes receptor activation. Thus, glycine bound to the NR1 subunit causes auto-inhibition of NR1/NR3 receptors whereas glycine binding to the NR3 subunits is required for opening of the ion channel. Our results establish differential roles of the high-affinity NR3 and low-affinity NR1 glycine-binding sites in excitatory glycine receptor function.  相似文献   

3.
Y Kloog  V Nadler  M Sokolovsky 《FEBS letters》1988,230(1-2):167-170
Binding of the labeled anticonvulsant drug [3H]dibenzocycloalkenimine (3H]MK-801) to the N-methyl-D-aspartate (NMDA) receptor and its dissociation from the receptor at 25°C are slow processes, both of which follow first order kinetics (t1/270 and 180 min, respectively). Both reactions are markedly accelerated by glutamate and glycine (t1/22-8 and 4 min, respectively), which allow bimolecular association kinetics of the labeled drug with the receptors whereas equilibrium binding of [3H]MK-801 (Kd 2–4 nM) is hardly affected by glutamate and glycine. The data suggest that MK-801 acts as a steric blocker of the NMDA receptor channel. The competitive antagonist D-(−)-2-amino-5-phosphovaleric acid (AP-5) freezes the receptor in a state which precludes either binding of [3H]MK-801 to the receptor channel or its dissociation from it. These findings have therapeutic implications.  相似文献   

4.
Abstract: To clarify the regulatory mechanism of the N -methyl- d -aspartate (NMDA) receptor/channel by several protein kinases, we examined the effects of purified type II of protein kinase C (PKC-II), endogenous Ca2+/calmodulin-dependent protein kinase II (CaMK-II), and purified cyclic AMP-dependent protein kinase on NMDA receptor/ channel activity in the postsynaptic density (PSD) of rat brain. Purified PKC-II and endogenous CaMK-II catalyzed the phosphorylation of 80–200-kDa proteins in the PSD and l -glutamate-(or NMDA)-induced increase of (+)-5-[3H]methyl-10, 11-dihydro-5 H -dibenzo[a, d]cyclohepten-5, 10-imine maleate ([3H]MK-801; open channel blocker for NMDA receptor/channel) binding activity was significantly enhanced. However, the pretreatment of PKC-II-and CaMK-II-catalyzed phosphorylation did not change the binding activity of l -[3H]glutamate, cis -4-[3H](phospho-nomethyl)piperidine-2-carboxylate ([3H]CGS-19755; competitive NMDA receptor antagonist), [3H]glycine, α-[3H]-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, or [3H]-kainate in the PSD. Pretreatment with PKC-II-and CaMK-II-catalyzed phosphorylation enhanced l -glutamate-induced increase of [3H]MK-801 binding additionally, although purified cyclic AMP-dependent protein kinase did not change l -glutamate-induced [3H]MK-801 binding. From these results, it is suggested that PKC-II and/or CaMK-II appears to induce the phosphorylation of the channel domain of the NMDA receptor/channel in the PSD and then cause an enhancement of Ca2+ influx through the channel.  相似文献   

5.
The receptor-ionophore complex of the N-methyl-D-aspartate (NMDA)-sensitive receptor was solubilized by deoxycholic acid from rat brain using (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801) binding as a marker for the receptor. Gel filtration of the solubilized preparations on a Sephadex G-25 column revealed significant [3H]MK-801 binding sensitive to potentiation by glutamate and glutamate/glycine, which was prevented by competitive antagonists for the NMDA and strychnine-insensitive glycine (GlyB) sites. In contrast to NMDA and glycine, spermidine markedly potentiated the amount of [3H]MK-801 binding in solubilized preparations by increasing the apparent affinity of the ligand. In the presence of all three stimulants, the solubilized preparations exhibited pharmacological profiles similar to those in the membrane preparations. These results clearly indicate that the whole macromolecular NMDA receptor-ionophore complex is solubilized under the experimental conditions used.  相似文献   

6.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

7.
Neurological symptoms are common in patients with glutaric acidemia type I (GA-I). Although the pathophysiology of this disorder is not yet fully established, 3-hydroxyglutaric acid (3-HGA), which accumulates in affected patients, has recently been demonstrated to be excitotoxic to embryonic chick and neonatal rat neurons probably via NMDA glutamate receptors. In the present study, we investigated the in vitro effects of 3-HGA on the [(3)H]glutamate and [(3)H]MK-801 (dizocilpine) binding to rat synaptic plasma membranes from cerebral cortex of young rats in order to elucidate the interactions of 3-HGA with glutamate receptors and its possible contribution to the in vitro excitotoxic properties of 3-HGA. 3-HGA (10-100 microM) significantly decreased Na(+)-dependent (up to 62%) and Na(+)-independent (up to 30%) [(3)H]glutamate binding to synaptic membranes, reflecting a possible competition between glutamate and 3-HGA for the glutamate transporter and receptor sites, respectively. Since a decrease in Na(+)-independent glutamate binding might represent an interaction of 3-HGA with glutamate receptors, we next investigated whether 3-HGA interacts with NMDA receptors by adding NMDA alone or combined with 3-HGA and measuring Na(+)-independent [(3)H]glutamate binding to synaptic membranes (binding to receptors). We verified that 3-HGA and NMDA, at 10 and 100 microM concentrations, decreased glutamate binding by up to 20 and 45%, respectively, and that the simultaneous addition of both substances did not provoke an additive effect, implying that they bind to NMDA receptors at the same site. Furthermore, the binding of the NMDA-channel blocker [(3)H ]MK-801 was significantly increased (approximately 32-40%) by 10 and 100 microM 3-HGA, implying that 3-HGA was able to open the NMDA channel allowing MK-801 binding, which is a characteristic of NMDA agonists. On the other hand, glutamate had a much higher stimulatory effect on this binding (180% increase), reflecting its strong NMDA agonist property. Furthermore, the simultaneous addition of 3-HGA and glutamate provoked an additive stimulatory effect on [(3)H]MK-801 binding to the NMDA receptor. These data indicate that, relatively to glutamate, 3-HGA is a weak agonist of NMDA receptors. Finally, we demonstrated that 3-HGA provoked a significant increase of extracellular calcium uptake by cerebral cortex slices, strengthening therefore, the view that 3-HGA activates NMDA receptors. The present study therefore, demonstrates at the molecular level that 3-HGA modulates glutamatergic neurotransmission and may explain previous findings relating the neurotoxic actions of this organic acid with excitotoxicity.  相似文献   

8.
A [3H]-labelled derivative of the drug (+)MK-801 with a high specific radioactivity was synthesized by first preparing a tribromo derivative of (+)MK-801 followed by catalytic reduction in the presence of [3H]-gas and subsequent purification of the radioactive product by reversed-phase high performance liquid chromatography (RP-HPLC). This resulted in pure (+) [3H]MK-801 with a specific radioactivity of 97 Ci/mmol. The (+) [3H]MK-801 was shown to interact with high affinity and selectivity with the phencyclidine (PCP) receptor in guinea pig brain membrane suspensions. The PCP receptor is associated with a cation channel that is chemically gated by glutamate and N-methyl-D-aspartate (NMDA). Drugs that interact with the PCP receptor block this channel. The (+) [3H]MK-801 described here will be useful to investigate the biochemistry of PCP/NMDA receptors in experiments where a high specific radioactivity is essential.  相似文献   

9.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   

10.
Diabetes is characterized by hyperglycemia due partly to increased hepatic glucose production. The hypothalamus regulates hepatic glucose production in rodents. However, it is currently unknown whether other regions of the brain are sufficient in glucose production regulation. The N-methyl-d-aspartate (NMDA) receptor is composed of NR1 and NR2 subunits, which are activated by co-agonist glycine and glutamate or aspartate, respectively. Here we report that direct administration of either co-agonist glycine or NMDA into the dorsal vagal complex (DVC), targeting the nucleus of the solitary tract, lowered glucose production in vivo. Direct infusion of the NMDA receptor blocker MK-801 into the DVC negated the metabolic effect of glycine. To evaluate whether NR1 subunit of the NMDA receptor mediates the effect of glycine, NR1 in the DVC was inhibited by DVC NR1 antagonist 7-chlorokynurenic acid or DVC shRNA-NR1. Pharmacological and molecular inhibition of DVC NR1 negated the metabolic effect of glycine. To evaluate whether the NMDA receptors mediate the effects of NR2 agonist NMDA, DVC NMDA receptors were inhibited by antagonist d-2-amino-5-phosphonovaleric acid (d-APV). DVC d-APV fully negated the ability of DVC NMDA to lower glucose production. Finally, hepatic vagotomy negated the DVC glycine ability to lower glucose production. These findings demonstrate that activation of NR1 and NR2 subunits of the NMDA receptors in the DVC is sufficient to trigger a brain-liver axis to lower glucose production, and suggest that DVC NMDA receptors serve as a therapeutic target for diabetes and obesity.  相似文献   

11.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

12.
The endogenous polyamines spermine and spermidine increase the binding of [3H]MK-801 to NMDA receptors. This effect is antagonized by diethylenetriamine (DET). We report here that spermine increases the rates of both association and dissociation of binding of [3H]MK-801, suggesting that it increases the accessibility of the binding site for MK-801 within the ion channel of the receptor complex. 1,10-Diaminodecane (DA10) inhibited the binding of [3H]MK-801. This effect was due to a decrease in the rate of association with no change in the rate of dissociation of [3H]MK-801. The effect of DA10 was not mediated by an action of DA10 at the binding sites for glutamate, glycine, Mg2+, or Zn2+, and was attenuated by DET. This suggests that DA10 acts at the polyamine recognition site. In hippocampal neurons the NMDA-elicited current was decreased by DA10, an effect opposite to that of spermine. The effects of spermine and DA10 were selectively blocked by DET. It is concluded that DA10 acts as a negative allosteric modulator or inverse agonist at the polyamine recognition site of the NMDA receptor.  相似文献   

13.
NMDA receptors are glutamate-regulated ion channels that are of great importance for many physiological and pathophysiological conditions in the mammalian central nervous system. We have previously shown that, at low pH, glutamate decreases binding of the open-channel blocker [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten, 5,10-imine ([3H]MK-801) to NMDA receptors in the presence of 1 mM Mg2+ but not in Krebs buffer. Here, we investigated which cations that block the glutamate-induced decrease in Krebs buffer, using [3H]MK-801 binding assays in membrane preparations from the rat cerebral cortex. At pH 6.0, Na+, K+, and Ca2+ antagonized the glutamate-induced decrease with cross-over values, which is a measure of the antagonist potencies of the cations, of 81, 71, and 26 mM, respectively, in the absence of added glycine. Thus, in Krebs buffer only the concentration of Na+ (126 mM) is sufficiently high to block the glutamate-induced decrease observed at low pH. In the presence of 1 mM Mg2+ and 10 mM Ca2+ at pH 7.4, the cross-over values for Na+, K+, and Ca2+ were 264, 139, and 122 mM, respectively, in the absence of added glycine. This is the same rank order of potency as observed at pH 6.0, suggesting that the less H+-sensitive and the less Ca2+-sensitive, glutamate-induced decreases in [3H]MK-801 binding represent the same entity. The glycine site antagonists 7-chlorokynurenate (10 microM) and 7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(H)-quinoline (L-701,324; 1 microM) antagonized the glutamate-induced decrease in [3H]MK-801 binding observed in presence of Mg2+ at pH 6.0, suggesting that glycine is required together with glutamate to induce the decrease observed at low pH. These results suggest that in addition to a previously described high-affinity binding site for H+ and Ca2+ there exist a low-affinity binding site for H+, Ca2+, Na+, and K+ on NMDA receptors. The latter site may under physiological conditions be blocked by Na+ or K+, depending on the extra/intracellular localization of the modulatory site. Both the high-affinity and low-affinity cation sites mediate antagonistic effects on the glutamate- and glycine-induced decrease of the affinity of the [3H]MK-801 binding site, which may correspond to similar changes in the affinity of the voltage-sensitive Mg2+-block site inside the NMDA receptor channel pore, which in turn may affect current and Ca2+ influx through activated NMDA receptor channels.  相似文献   

14.
In ionotropic glutamate receptors, agonist binding occurs in a conserved clam shell-like domain composed of the two lobes D1 and D2. Docking of glutamate into the binding cleft promotes rotation in the hinge region of the two lobes, resulting in closure of the binding pocket, which is thought to represent a prerequisite for channel gating. Here, we disrupted D1D2 interlobe interactions in the NR2A subunit of N-methyl-d-aspartate (NMDA) receptors through systematic mutation of individual residues and studied the influence on the activation kinetics of currents from NR1/NR2 NMDA receptors heterologously expressed in HEK cells. We show that the mutations affect differentially glutamate binding and channel gating, depending on their location within the binding domain, mainly by altering k(off) and k(cl), respectively. Whereas impaired stability of glutamate in its binding site is the only effect of mutations on one side of the ligand binding pocket, close to the hinge region, alterations in gating are the predominant consequence of mutations on the opposite side, at the entrance of the binding pocket. A mutation increasing D1D2 interaction at the entrance of the pocket resulted in an NMDA receptor with an increased open probability as demonstrated by single channel and whole cell kinetic analysis. Thus, the results indicate that agonist-induced binding domain closure is itself a complex process, certain aspects of which are coupled either to binding or to gating. Specifically, we propose that late steps of domain closure, in kinetic terms, represent part of channel gating.  相似文献   

15.
Coexpression of PSD-95(c-Myc) with NR1-1a/NR2A NMDA receptors in human embryonic kidney (HEK) 293 cells resulted in a decrease in efficacy for the glycine stimulation of [3 H]MK801 binding similar to that previously described for l-glutamate. The inhibition constants (K (I) s) for the binding of l-glutamate and glycine to NR1-1a/NR2A determined by [3 H]CGP 39653 and [3 H]MDL 105 519 displacement assays, respectively, were not significantly different between NR1-1a/NR2A receptors coexpressed +/- PSD-95(c-Myc). The increased EC(50) for l-glutamate enhancement of [3 H]MK801 binding was also found for NR1-2a/NR2A and NR1-4b/NRA receptors thus the altered EC(50) is not dependent on the N1, C1 or C2 exon of the NR1 subunit. The NR1-4b but not the NR1-1a subunit was expressed efficiently at the cell surface in the absence of NR2 subunits. Total NR1-4b and NR1-4b/NR2A expression was enhanced by PSD-95(c-Myc) but whole cell enzyme-linked immunoadsorbent assays (ELISAs) showed that this increase was not due to increased expression at the cell surface. It is suggested that PSD-95(c-Myc) has a dual effect on NMDA receptors expressed in mammalian cells, a reduction in channel gating and an enhanced expression of NMDA receptor subunits containing C-terminal E(T/S)XV PSD-95 binding motifs.  相似文献   

16.
In rat mesencephalic cell cultures, L-glutamate at concentrations ranging from 100 microM to 1 mM stimulated release of [3H]dopamine that was attenuated by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxalinedione, but not by the selective NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; 10 microM) and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (300 microM). Even at 1 mM glutamate, this release was Ca2+ dependent. These observations suggest that the release was mediated by a non-NMDA receptor. Only release stimulated by a lower concentration (10 microM) of glutamate was inhibited by MK-801 (10 microM), indicating that glutamate at this concentration activates the NMDA receptor. By contrast, L-aspartate at concentrations of 10 microM to 1 mM evoked [3H]dopamine release that was completely inhibited by MK-801 (10 microM) and was also Ca2+ dependent (tested at 1 and 10 mM aspartate). Thus, effects of aspartate involved activation of the NMDA receptor. Sulfur-containing amino acids (L-homocysteate, L-homocysteine sulfinate, L-cysteate, L-cysteine sulfinate) also evoked [3H]dopamine release. Release evoked by submillimolar concentrations of these amino acids was attenuated by MK-801 (10 microM), indicating involvement of the NMDA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
N-Methyl-D-aspartate (NMDA) receptors are susceptible to open-channel block by dizolcipine (MK-801), ketamine and Mg(2+) and are permeable to Ca(2+). It is thought that a tryptophan residue in the second membrane-associated domain (M2) may form part of the binding site for open-channel blockers and contribute to Ca(2+) permeability. We tested this hypothesis using recombinant wild-type and mutant NMDA receptors expressed in HEK-293 cells. The tryptophan was mutated to a leucine (W-5L) in both the NMDAR1 and NMDAR2A subunits. MK-801 and ketamine progressively inhibited currents evoked by glutamate, and the rate of inhibition was increased by the W-5L mutation. An increase in open channel probability accounted for the acceleration. Fluctuation analysis of the glutamate-evoked current revealed that the NMDAR1 W-5L mutation increased channel mean open time, providing further evidence for an alteration in gating. However, the equilibrium affinities of Mg(2+) and ketamine were largely unaffected by the W-5L mutation, and Ca(2+) permeability was not decreased. Therefore, the M2 tryptophan residue of the NMDA channel is not involved in Ca(2+) permeation or the binding of open-channel blockers, but plays an important role in channel gating.  相似文献   

18.
Role of Glycine in the N-Methyl-d-Aspartate-Mediated Neuronal Cytotoxicity   总被引:7,自引:4,他引:3  
Current evidence indicates that glutamate acting via the N-methyl-D-aspartate (NMDA) receptor/ion channel complex plays a major role in the neuronal degeneration associated with a variety of neurological disorders. In this report the role of glycine in NMDA neurotoxicity was examined. We demonstrate that NMDA-mediated neurotoxicity is markedly potentiated by glycine and other amino acids, e.g., D-serine. Putative glycine antagonists HA-966 and 7-chlorokynurenic acid were highly effective in preventing NMDA neurotoxicity, even in the absence of added glycine. The neuroprotective action of HA-966 and 7-chlorokynurenic acid, but not that of NMDA antagonists 3-(2-carboxypiperazine-4-yl)propylphosphonate and MK-801, could be reversed by glycine. These results indicate that glycine, operating through a strychinine-insensitive glycine site, plays a central permissive role in NMDA-mediated neurotoxicity.  相似文献   

19.
We have previously found two stages of amnesia evoked by disruption of memory reconsolidation with MK-801 (NMDA glutamate receptors antagonists) application in food aversion conditioned snails. Repeated conditioning restored the food aversion at early stage of amnesia development (<10 days), whereas repeated conditioning 10 days after MK-801 application did not restore the food aversion. In present work, amnesia was induced with MK-801/reminding 24 hours after food aversion conditioning, and antiamnestic effects of NMDA receptor glycine site agonist d-cycloserine were studied at early (3rd day) or late (12th day) stages of amnesia development. D-cycloserine injection and reminding restored memory only 3 days after amnesia induction whereas d-cycloserine injection without reminding was ineffective. D-cycloserine injection and reminding as well as repeated learning 12 days after amnesia induction were also ineffective in memory restoration. Thus, for the first time, it is revealed that NMDA receptor agonist d-cycloserine influences the memory restoration processes only at early but not the later stages of amnesia development.  相似文献   

20.
The inhibitory effects of the polyamine antagonist, arcaine, and magnesium on N-methyl-D-aspartate (NMDA) induced hippocampal [3H]norepinephrine release and [piperidyl-3,4-3H(N)]-[N-1-(2- thienyl)cyclohexyl]-3,4-piperidine (TCP) binding were studied. We report that the inhibitory effect of arcaine and magnesium on NMDA-induced [3H]norepinephrine release is diminished by increasing the extracellular K+ concentration, presumably reflecting a voltage-dependent block for both. However, unlike MK-801, the block by arcaine shows no evidence of use dependence. Further, the IC50 value for magnesium inhibition of [piperidyl-3,4-3H(N)]TCP binding varies with the state of activation of the channel, being the lowest when the channel is maximally activated and the highest when the channel is least activated. On the other hand, the apparent affinity of arcaine is not significantly affected by the activation of the channel by glutamate and glycine, but is decreased by the polyamine agonist, spermidine. These data suggest that the polyamine antagonist binding site is distinct from either the phencyclidine/MK-801 site or the voltage-dependent channel site for magnesium. Nonetheless, these data suggest that the site must be located in a region of the NMDA receptor ionophore complex capable of sensing transmembrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号