首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30–35, and 50–55 of the stability program. At generations 0 and 30–35, LC gene expression level was higher than HC gene, whereas at generation 50–55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).  相似文献   

2.
Therapeutic monoclonal antibodies, a highly successful class of biological drugs, are conventionally manufactured in mammalian cell lines. A recent approach to increase the therapeutic effectiveness of monoclonal antibodies has been to combine two or more of them; however this increases the complexity of development and manufacture. To address this issue a method to efficiently express multiple monoclonal antibodies from a single cell has been developed and we describe here the generation of stable cell clones that express high levels of a human monoclonal antibody mixture. PER.C6® cells were transfected with a combination of plasmids containing genes encoding three different antibodies. Clones that express the three corresponding antibody specificities were identified, subcloned, and passaged in the absence of antibiotic selection pressure. At several time points, batch production runs were analyzed for stable growth and IgG production characteristics. The majority (11/12) of subclones analyzed expressed all three antibody specificities in constant ratios with total IgG productivity ranging between 15 and 20 pg/cell/day under suboptimal culture conditions after up to 67 population doublings. The growth and IgG production characteristics of the stable clones reported here resemble those of single monoclonal antibody cell lines from conventional clone generation programs. We conclude that the methodology described here is applicable to the generation of stable PER.C6® clones for industrial scale production of mixtures of antibodies. Biotechnol. Bioeng. 2010;106: 741–750. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
4.
Cell cloning and subsequent process development activities are on the critical path directly impacting the timeline for advancement of next generation therapies to patients with unmet medical needs. The use of stable cell pools for early stage material generation and process development activities is an enabling technology to reduce timelines. To successfully use stable pools during development, it is important that bioprocess performance and requisite product quality attributes be comparable to those observed from clonally derived cell lines. To better understand the relationship between pool and clone derived cell lines, we compared data across recent first in human (FIH) programs at Amgen including both mAb and Fc‐fusion modalities. We compared expression and phenotypic stability, bioprocess performance, and product quality attributes between material derived from stable pools and clonally derived cells. Overall, our results indicated the feasibility of matching bioprocess performance and product quality attributes between stable pools and subsequently derived clones. These findings support the use of stable pools to accelerate the advancement of novel biologics to the clinic. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1476–1482, 2017  相似文献   

5.
To meet product quality and cost parameters for therapeutic monoclonal antibody (mAb) production, cell lines are required to have excellent growth, stability, and productivity characteristics. In particular, cell line generation stability is critical to the success of a program, especially where high cell line generation numbers are required for large in‐market supply. However, a typical process for developing such cell lines is laborious, lengthy, and costly. In this study, we applied a FLP/FRT recombinase‐mediated cassette exchange (RMCE) system to build a site‐specific integration (SSI) system for mAb expression in the commercially relevant CHOK1SV cell line. Using a vector with a FRT‐flanked mAb expression cassette, we generated a clonal cell line with good productivity, long‐term production stability, and low mAb gene‐copy number indicating the vector was located in a ‘hot‐spot.’ A SSI host cell line was made by removing the mAb genes from the ‘hot‐spot’ by RMCE, creating a ‘landing pad’ containing two recombination cassettes that allow targeting of one or two copies of recombinant genes. Cell lines made from this host exhibited excellent growth and productivity profiles, and stability for at least 100 generations in the absence of selection agents. Importantly, while clones containing two copies had higher productivity than single copy clones, both were stable over many generations. Taken together, this study suggests the use of FLP‐based RMCE to develop SSI host cells for mAb production in CHOK1SV offers significant savings in both resources and overall cell line development time, leading to a shortened ‘time‐to‐clinic’ for therapeutic mAbs. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1645–1656, 2015  相似文献   

6.
Complex recombinant proteins are increasingly desired as potential therapeutic options for many disease indications and are commonly expressed in the mammalian Chinese hamster ovary (CHO) cells. Generally, stoichiometric expression and proper folding of all subunits of a complex recombinant protein are required to achieve the desired titers and product qualities for a complex molecule. Targeted integration (TI) cell line development (CLD), which entails the insertion of the desired transgene(s) into a predefined landing-pad in the CHO genome, enables the generation of a homogeneous pool of cells from which clonally stable and high titer clones can be isolated with minimal screening efforts. Despite these advantages, using a single transgene(s) configuration with predetermined gene dosage might not be adequate for the expression of complex molecules. The goal of this study is to develop a method for seamless screening of many vector configurations in a single TI CLD attempt. As testing vector configurations in transient expression systems is not predictive of protein expression in the stable cell lines and parallel TI CLDs with different transgene configurations is resource-intensive, we tested the concept of randomized configuration targeted integration (RCTI) CLD approach for expression of complex molecules. RCTI allows simultaneous transfection of multiple vector configurations, encoding a complex molecule, to generate diverse TI clones each with a single transgene configuration but clone specific productivity and product qualities. Our findings further revealed a direct correlation between transgenes’ configuration/copy-number and titer/product quality of the expressed proteins. RCTI CLD enabled, with significantly fewer resources, seamless isolation of clones with comparable titers and product quality attributes to that of several parallel standard TI CLDs. Therefore, RCTI introduces randomness to the TI CLD platform while maintaining all the advantages, such as clone stability and reduced sequence variant levels, that the TI system has to offer.  相似文献   

7.
Cell line development (CLD) represents a critical, yet time-consuming, step in the biomanufacturing process as significant resources are devoted to the scale-up and screening of several hundreds to thousands of single-cell clones. Typically, transfected pools are fully recovered from selection and characterized for growth, productivity, and product quality to identify the best pools suitable for single-cell cloning (SCC) using limiting dilution or fluorescence-activated cell sorting (FACS). Here we report the application of the Berkeley Lights Beacon Instrument (BLI) in an early SCC process to accelerate the CLD timeline. Transfected pools were single-cell cloned when viabilities reached greater than 85% or during selection when viabilities were less than 30%. Clones isolated from these accelerated processes exhibited comparable growth, productivity, and product quality to those derived from a standard CLD process and fit into an existing manufacturing platform. With these approaches, up to a 30% reduction in the overall CLD timeline was achieved. Furthermore, early process-derived clones demonstrated equivalent long-term stability compared with standard process-derived clones over 50 population doubling levels (PDLs). Taken together, the data supported early SCC on the BLI as an attractive approach to reducing the standard CLD timeline while still identifying clones with acceptable manufacturability.  相似文献   

8.
Chinese hamster ovary (CHO) cells are commonly used for the expression of therapeutic proteins. To increase the titer output of CHO production cultures either specific productivity (Qp), growth, or both need to be increased. Generally, Qp and growth are inversely correlated and cell lines with high Qp have slower growth and vice versa. During the cell line development (CLD) process, the faster-growing cells tend to take over the culture and represent the majority of the isolated clones post single cell cloning. In this study, combinations of regulated and constitutive expression systems were used to supertransfect targeted integration (TI) cell lines expressing the same antibody either constitutively or under-regulated expression. Clone screening with a hybrid expression system (inducible + constitutive) allowed identification and selection of higher titer clones under uninduced conditions, without a negative impact on cell growth during clone selection and expansion. Induction of the regulated promoter(s) during the production phase increased the Qp without negatively affecting growth, resulting in approximately twofold higher titers (from 3.5 to 6–7 g/L). This was also confirmed using a 2-site TI host where the gene of interest was expressed inducibly from Site 1 and constitutively from Site 2. Our findings suggest that such a hybrid expression CLD system can be used to increase production titers, providing a novel approach for expression of therapeutic proteins with high titer market demands.  相似文献   

9.
10.
We have constructed a single plasmid-, Tc1-like transposon-based gene transfer vector, termed the Prince Charming vector (pPC). The pPC vector was constructed by ligating the CMV-driven "Sleeping Beauty" transposase gene downstream to the Tc1-like transposon inverted repeat (IR) elements and by inserting the RSV promoter (to drive expression of the gene-of-interest) along with a multiple cloning site (MCS), a polyadenylation signal, and the SV40 promoter-driven neomycin gene, at a site flanked by the transposon IR elements. To assess the utility of the pPC vector, we cloned a red fluorescent protein (RFP) gene into the pPC vector at the MCS and transfected human TE85 osteosarcoma cells with the pPC-RFP expression vector using Effectene. Stable transgenic cell clones expressing RFP were selected with G418 sulfate and individual clones were isolated. After 4 weeks of clonal isolation and expansion, 99% of cells in each randomly selected clone expressed RFP strongly. Aliquots of each clone were then maintained in either the presence or the absence of G418 sulfate and were passaged weekly. Even after 6 months in culture in the absence of G418 sulfate, approximately 90% of the cells in each clone still maintained a strong expression level of RFP, indicating that these transgenic cell clones were stable and that the clonal stability of these clones did not require a constant selection pressure. In conclusion, we have developed a single plasmid-, Tc1-like transposon-based gene transfer vector that can be used to generate stable transgenic mammalian cell clones.  相似文献   

11.
The induction of an in vitro T cell response against tumour-associated antigens with subsequent expansion of the individual cytotoxic T lymphocyte (CTL) clones still is not routine and the only tumour-associated antigen that has been found to easily induce the establishment of CTL clones is the MART-1/Melan-A antigen. In this paper, we describe a new approach for in vitro immunization based on the use of preselected melanoma cell clones. The human melanoma cell subline FM3.P was cloned and the immunological properties of individual clones were compared. Melanoma cell clone FM3.29, having a high level of expression of melanoma differentiation antigens, as well as high levels of the HLA class I and class II antigens and adhesion molecules, was used for the establishment of a CTL line that was subsequently cloned. For optimization of the conditions of growth of established CTL clones, a particular melanoma subline FM3.D/40 was selected for supporting the proliferation of CTL clones. The majority of the established CTL clones recognized the melanoma-associated differentiation antigens gp100 and MART-1/Melan-A. Epitope analysis indicated that two different epitopes derived from gp100 (154-162 and 280-288) and a single epitope from MART-1/Melan-A (27 35) were recognized by these CTL clones. The gp100-specific CTL clones were found to be significantly more sensitive to the culture conditions than the MART-1/Melan-A-specific CTL clones. In addition, the presence of excess peptide in the culture medium induced autokilling of the gp100-specific, but not the MART-1/Melan-A-specific CTL clones. Taken together, these results demonstrate that, by careful preselection of melanoma cell lines and clones both for the induction of CTL line from patients' peripheral blood lymphocytes and subsequent cloning, it is possible to obtain a large number of stable CTL clones even against such an inherently "difficult" differentiation antigen as gp100.  相似文献   

12.
High cell density (HCD) culture increases recombinant protein productivity via higher biomass. Compared to traditional fed‐batch cultures, HCD is achieved by increased nutrient availability and removal of undesired metabolic components via regular medium replenishment. HCD process development is usually performed in instrumented lab‐scale bioreactors (BR) that require time and labor for setup and operation. To potentially minimize resources and cost during HCD experiments, we evaluated a 2‐week 50‐mL Tubespin (TS) simulated HCD process where daily medium exchanges mimic the medium replacement rate in BR. To best assess performance differences, we cultured 13 different CHO cell lines in simulated HCD as satellites from simultaneous BR, and compared growth, metabolism, productivity and product quality. Overall, viability, cell‐specific productivity and metabolism in TS were comparable to BR, but TS cell growth and final titer were lower by 25 and 15% in average, respectively. Peak viable cell densities were lower in TS than BR as a potential consequence of lower pH, different medium exchange strategy and dissolved oxygen limitations. Product quality attributes highly dependent on intrinsic molecule or cell line characteristics (e.g., galactosylation, afucosylation, aggregation) were comparable in both scales. However, product quality attributes that can change extracellularly as a function of incubation time (e.g., deamidation, C‐terminal lysine, fragmentation) were in general lower in TS because of shorter residence time than HCD BR. Our characterization results and two case studies show that TS‐simulated HCD cultures can be effectively used as a simple scale‐down model for relative comparisons among cell lines for growth or productivity (e.g., clone screening), and for investigating effects on protein galactosylation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:490–499, 2017  相似文献   

13.
14.
Early analytical clone screening is important during Chinese hamster ovary (CHO) cell line development of biotherapeutic proteins to select a clonally derived cell line with most favorable stability and product quality. Sensitive sequence confirmation methods using mass spectrometry have limitations in throughput and turnaround time. Next‐generation sequencing (NGS) technologies emerged as alternatives for CHO clone analytics. We report an efficient NGS workflow applying the targeted locus amplification (TLA) strategy for genomic screening of antibody expressing CHO clones. In contrast to previously reported RNA sequencing approaches, TLA allows for targeted sequencing of genomic integrated transgenic DNA without prior locus information, robust detection of single‐nucleotide variants (SNVs) and transgenic rearrangements. During clone selection, TLA/NGS revealed CHO clones with high‐level SNVs within the antibody gene and we report in another case the utility of TLA/NGS to identify rearrangements at transgenic DNA level. We also determined detection limits for SNVs calling and the potential to identify clone contaminations by TLA/NGS. TLA/NGS also allows to identify genetically identical clones. In summary, we demonstrate that TLA/NGS is a robust screening method useful for routine clone analytics during cell line development with the potential to process up to 24 CHO clones in less than 7 workdays.  相似文献   

15.
16.
The major challenge in the selection process of recombinant cell lines for the production of biologics is the choice, early in development, of a clonal cell line presenting a high productivity and optimal cell growth. Most importantly, the selected candidate needs to generate a product quality profile which is adequate with respect to safety and efficacy and which is preserved across cell culture scales. We developed a high‐throughput screening and selection strategy of recombinant cell lines, based on their productivity in shaking 96‐deepwell plates operated in fed‐batch mode, which enables the identification of cell lines maintaining their high productivity at larger scales. Twelve recombinant cell lines expressing the same antibody with different productivities were selected out of 470 clonal cell lines in 96‐deepwell plate fed‐batch culture. They were tested under the same conditions in 50 mL vented shake tubes, microscale and lab‐scale bioreactors in order to confirm the maintenance of their performance at larger scales. The use of a feeding protocol and culture conditions which are essentially the same across the different scales was essential to maintain productivity and product quality profiles across scales. Compared to currently used approaches, this strategy has the advantage of speeding up the selection process and increases the number of screened clones for getting high‐producing recombinant cell lines at manufacturing scale with the desired performance and quality. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:160–170, 2016  相似文献   

17.
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1‐checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. Biotechnol. Bioeng. 2015;112: 141–155. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

18.
Generating stable, high-producing mammalian cell lines is a major bottleneck in the manufacture of recombinant therapeutic proteins. Conventional gene transfer methods for cell line generation rely on random plasmid integration, resulting in unpredictable and highly variable levels of transgene expression. As a consequence, a large number of stably transfected cells must be analyzed to recover a few high-producing clones. Here we present an alternative gene transfer method for cell line generation based on transgene integration mediated by the piggyBac (PB) transposon. Recombinant Chinese hamster ovary (CHO) cell lines expressing a tumor necrosis factor receptor:Fc fusion protein were generated either by PB transposition or by conventional transfection. Polyclonal populations and isolated clonal cell lines were characterized for the level and stability of transgene expression for up to 3 months in serum-free suspension culture. Pools of transposed cells produced up to fourfold more recombinant protein than did the pools generated by standard transfection. For clonal cell lines, the frequency of high-producers was greater following transposition as compared to standard transfection, and these clones had a higher volumetric productivity and a greater number of integrated transgenes than did those generated by standard transfection. In general, the volumetric productivity of the cell pools and individual cell lines generated by transposition was stable for up to 3 months in the absence of selection. Our results indicate that the PB transposon supports the generation of cell lines with high and stable transgene expression at an elevated frequency relative to conventional transfection. Thus, PB-mediated gene delivery is expected to reduce the extent of recombinant cell line screening.  相似文献   

19.
Here we describe a method that couples flow cytometric detection with the attenuated translation of a reporter protein to enable efficient selection of CHO clones producing high levels of recombinant proteins. In this system, a small cell surface reporter protein is expressed from an upstream open reading frame utilizing a non-AUG initiation (alternate start) codon. Due to the low translation initiation efficiency of this alternate start codon, the majority of translation initiation events occur at the first AUG of the downstream open reading frame encoding the recombinant protein of interest. While translation of the reporter is significantly reduced, the levels are sufficient for detection using flow cytometric methods and, in turn, predictive of protein expression from the gene of interest since both ORFs are translated from the same mRNA. Using this system, CHO cells have been sorted to obtain enriched pools producing significantly higher levels of recombinant proteins than the starting cell population and clones with significantly better productivity than those generated from limiting dilution cloning. This method also serves as an effective screening tool during clone expansion to enable resources to be focused solely on clones with both high and stable expression.  相似文献   

20.
Most biopharmaceuticals produced today are generated using Chinese hamster ovary (CHO) cells, therefore significant attention is focused on methods to improve CHO cell productivity and product quality. The discovery of gene-editing tools, such as CRISPR/Cas9, offers new opportunities to improve CHO cell bioproduction through cell line engineering. Recently an additional CRISPR-associated protein, Cas12a (Cpf1), was shown to be effective for gene editing in eukaryotic cells, including CHO. In this study, we demonstrate the successful application of CRISPR/Cas12a for the generation of clonally derived CHO knockout (KO) cell lines with improved product quality attributes. While we found Cas12a efficiency to be highly dependent on the targeting RNA used, we were able to generate CHO KO cell lines using small screens of only 96–320 clonally derived cell lines. Additionally, we present a novel bulk culture analysis approach that can be used to quickly assess CRISPR RNA efficiency and determine ideal screen sizes for generating genetic KO cell lines. Most critically, we find that Cas12a can be directly integrated into the cell line generation process through cotransfection with no negative impact on titer or screen size. Overall, our results show CRISPR/Cas12a to be an efficient and effective CHO genome editing tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号