首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
人类疱疹病毒 7 型(HHV-7)的感染依赖于包膜糖蛋白在病毒生命周期的多个阶段发挥功能. 这些蛋白质可以介导病毒吸附,病毒包膜和宿主细胞膜融合以及病毒在细胞间的接触传播. 将表达 HHV-7 糖蛋白的 293T 细胞与 HHV-7 易感的SupT1 细胞共培养,检测虫荧光素酶报告基因的表达,以鉴定介导膜融合的 HHV-7 糖蛋白. 研究发现,HHV-7 糖蛋白 gB、gH、gL、gO 能介导 293T 细胞与 SupT1 细胞的融合,且融合可被抗 CD4 单抗所抑制. 结果表明,糖蛋白 gB、gH、gL、gO对于 HHV-7 引发的膜融合是必需的,其中某个蛋白质或所形成的蛋白质复合物可能是 CD4 的配体.  相似文献   

2.
Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion   总被引:4,自引:0,他引:4  
Pertel PE 《Journal of virology》2002,76(9):4390-4400
Herpesvirus entry into cells and herpesvirus-induced cell fusion are related processes in that virus penetration proceeds by fusion of the viral envelope and cell membrane. To characterize the human herpesvirus 8 (HHV-8) glycoproteins that can mediate cell fusion, a luciferase reporter gene activation assay was used. Chinese hamster ovary (CHO) cells expressing the HHV-8 glycoproteins of interest along with a luciferase reporter gene under the control of the T7 promoter were cocultivated with human cells transfected with T7 RNA polymerase. Because HHV-8 glycoprotein B (gB) expressed in CHO cells localizes to the perinuclear region, a truncated form of gB (designated gB(MUT)) that lacks putative endocytosis signals was constructed by deletion of the distal 58 amino acids of the cytoplasmic tail. HHV-8 gB(MUT) was expressed efficiently on the surface of CHO cells. HHV-8 gB, gH, and gL could mediate the fusion of CHO cells with two different human cell types, embryonic kidney cells and B lymphocytes. Substituting gB(MUT) for gB significantly enhanced the fusion of CHO cells with human embryonic kidney cells but not B lymphocytes. Thus, two human cell types known to be susceptible to HHV-8 entry were also suitable targets for cell fusion induced by HHV-8 gB, gH, and gL. For human embryonic kidney cells and B cells at least, optimal fusion was noted with the expression of all three HHV-8 glycoproteins.  相似文献   

3.
An immunodominant envelope glycoprotein is encoded by the human herpesvirus 8 (HHV-8) (also termed Kaposi's sarcoma-associated herpesvirus) K8.1 gene. The functional role of glycoprotein K8.1 is unknown, and recognizable sequence homology to K8.1 is not detectable in the genomes of most other closely related gammaherpesviruses, such as herpesvirus saimiri or Epstein-Barr virus. In search for a possible function for K8.1, we expressed the ectodomain of K8.1 fused to the Fc part of human immunoglobulin G1 (K8.1DeltaTMFc). K8.1DeltaTMFc specifically bound to the surface of cells expressing glycosaminoglycans but not to mutant cell lines negative for the expression of heparan sulfate proteoglycans. Binding of K8.1DeltaTMFc to mammalian cells could be blocked by heparin. Interestingly, the infection of primary human endothelial cells by HHV-8 could also be blocked by similar concentrations of heparin. The specificity and affinity of these interactions were then determined by surface plasmon resonance measurements using immobilized heparin and soluble K8.1. This revealed that K8.1 binds to heparin with an affinity comparable to that of glycoproteins B and C of herpes simplex virus, which are known to be involved in target cell recognition by binding to cell surface proteoglycans, especially heparan sulfate. We conclude that cell surface glycosaminoglycans play a crucial role in HHV-8 target cell recognition and that HHV-8 envelope protein K8.1 is at least one of the proteins involved.  相似文献   

4.
A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry.   总被引:23,自引:0,他引:23  
Herpes simplex virus type 1 (HSV-1) binds to cells through interactions of viral glycoproteins gB and gC with heparan sulfate chains on cell surface proteoglycans. This binding is not sufficient for viral entry, which requires fusion between the viral envelope and cell membrane. Here, we show that heparan sulfate modified by a subset of the multiple D-glucosaminyl 3-O-sulfotransferase isoforms provides sites for the binding of a third viral glycoprotein, gD, and for initiation of HSV-1 entry. We conclude that susceptibility of cells to HSV-1 entry depends on (1) presence of heparan sulfate chains to which virus can bind and (2) 3-O-sulfation of specific glucosamine residues in heparan sulfate to generate gD-binding sites or the expression of other previously identified gD-binding receptors.  相似文献   

5.
We investigated cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1 strain IIIB expressed on the surface of CHO cells. These cells formed syncytia when incubated together with CD4-positive human lymphoblastoid SupT1 cells or HeLa-CD4 cells but not when incubated with CD4-negative cell lines. A new assay for binding and fusion was developed by using fluorescent phospholipid analogs that were produced in SupT1 cells by metabolic incorporation of BODIPY-labeled fatty acids. Fusion occurred as early as 10 min after mixing of labeled SupT1 cells with unlabeled CHO-gp160 cells at 37 degrees C. When both the fluorescence assay and formation of syncytia were used, fusion of SupT1 and HeLa-CD4 cells with CHO-gp160 cells was observed only at temperatures above 25 degrees C, confirming recent observations (Y.-K. Fu, T.K. Hart, Z.L. Jonak, and P.J. Bugelski, J. Virol. 67:3818-3825, 1993). This temperature dependence was not observed with influenza virus-induced cell-cell fusion, which was quantitatively similar at both 20 and 37 degrees C, indicating that cell-cell fusion in general is not temperature dependent in this range. gp120-CD4-specific cell-cell binding was found over the entire 0 to 37 degrees C range but increased markedly above 25 degrees C. The enhanced binding and fusion were reduced by cytochalasins B and D. Binding of soluble gp120 to CD4-expressing cells was equivalent at 37 and 16 degrees C. Together, these data indicate that during gp120-gp41-induced syncytium formation, initial cell-cell binding is followed by a cytoskeleton-dependent increase in the number of gp120-CD4 complexes, leading to an increase in the avidity of cell-cell binding. The increased number of gp120-CD4 complexes is required for fusion, which suggests that the formation of a fusion complex consisting of multiple CD4 and gp120-gp41 molecules is a step in the fusion mechanism.  相似文献   

6.
Herpes simplex virus type 2 (HSV-2) interacts with cell surface glycosaminoglycans during virus attachment. Glycoprotein B of HSV-2 can potentially mediate the interaction between the virion and cell surface glycosaminoglycans. To determine the specificity, kinetics, and affinity of these interactions, we used plasmon resonance-based biosensor technology to measure HSV-2 glycoprotein binding to glycosaminoglycans in real time. The recombinant soluble ectodomain of HSV-2 gB (gB2) but not the soluble ectodomain of HSV-2 gD bound readily to biosensor surfaces coated with heparin. The affinity constants (Kds) were determined for gB2 (Kd = 7.7 x 10(-7) M) and for gB2 deltaTM (Kd = 9.9 x 10(-7) M), a recombinant soluble form of HSV-2 gB in which only its transmembrane domain has been deleted. gB2 binding to the heparin surface was competitively inhibited by low concentrations of heparin (50% effective dose [ED50] = 0.08 microg/ml). Heparan sulfate and dermatan sulfate glycosaminoglycans have each been suggested as cell surface receptors for HSV. Our biosensor analyses showed that both heparan sulfate and dermatan sulfate inhibited gB2 binding (ED50 = 1 to 5 microg/ml), indicating that gB2 interacts with both heparin-like and dermatan sulfate glycosaminoglycans. Chondroitin sulfate A, in contrast, inhibited gB2 binding to heparin only at high levels (ED50 = 65 microg/ml). The affinity and specificity of gB2 binding to glycosaminoglycans demonstrated in these studies support its role in the initial binding of HSV-2 to cells bearing heparan sulfate or dermatan sulfate glycosaminoglycans.  相似文献   

7.
Attachment to cell surface heparan sulfate proteoglycans is the first step in infection by several alphaherpesviruses. This interaction is primarily mediated by virion glycoprotein C (gC). In herpes simplex virus, in the absence of the nonessential gC, heparan sulfate binding is effected by glycoprotein B. In contrast, gC-negative pseudorabies virus (PrV) infects target cells via a heparan sulfate-independent mechanism, indicating that PrV virion gB does not productively interact with heparan sulfate. To assay whether a heterologous alphaherpesvirus gB protein will confer productive heparan sulfate binding on gC-negative PrV, gC was deleted from an infectious PrV recombinant, PrV-9112C2, which expresses bovine herpesvirus 1 (BHV-1) gB instead of PrV gB. Our data show that gC-negative PrV-BHV-1 gB recombinant 9112C2-delta gCbeta was not inhibited in infection by soluble heparin, in contrast to the gC-positive parental strain. Similar results were obtained when wild-type BHV-1 was compared with a gC-negative BHV-1 mutant. Moreover, infection of cells proficient or deficient in heparan sulfate biosynthesis occurred with equal efficiency by PrV-9112C2-delta gCbeta, whereas heparan sulfate-positive cells showed an approximately fivefold higher plating efficiency than heparan sulfate-negative cells with the parental gC-positive virus. In summary, our data show that in a PrV gC-negative virion background, BHV-1 gB is not able to mediate infection by productive interaction with heparan sulfate, and they indicate the same lack of heparin interaction for BHV-1 gB in gC-negative BHV-1.  相似文献   

8.
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus, implicated in the pathogenesis of Kaposi's sarcoma, utilizes heparan sulfate-like molecules to bind the target cells via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8-gB possesses the Arg-Gly-Asp (RGD) motif, the minimal peptide region of many proteins known to interact with subsets of host cell surface integrins. HHV-8 utilizes alpha3beta1 integrin as one of the receptors for its entry into the target cells via its gB interaction and induces the activation of focal adhesion kinase (FAK) (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Since FAK activation is the first step in the outside-in signaling necessary for integrin-mediated cytoskeletal rearrangements, cell adhesions, motility, and proliferation, the ability of HHV-8-gB to mediate the target cell adhesion was examined. A truncated form of gB without the transmembrane and carboxyl domains (gBdeltaTM) and a gBdeltaTM mutant (gBdeltaTM-RGA) with a single amino acid mutation (RGD to RGA) were expressed in a baculovirus system and purified. Radiolabeled HHV-8-gBdeltaTM, gBdeltaTM-RGA, and deltaTMgpK8.1A proteins bound to the human foreskin fibroblasts (HFFs), human dermal microvascular endothelial (HMVEC-d) cells, human B (BJAB) cells, and Chinese hamster ovary (CHO-K1) cells with equal efficiency, which was blocked by preincubation of proteins with soluble heparin. Maxisorp plate-bound gBdeltaTM protein induced the adhesion of HFFs and HMVEC-d and monkey kidney epithelial (CV-1) cells in a dose-dependent manner. In contrast, the gBdeltaTM-RGA and DeltaTMgpK8.1A proteins did not mediate adhesion. Adhesion mediated by gBdeltaTM was blocked by the preincubation of target cells with RGD-containing peptides or by the preincubation of plate-bound gBdeltaTM protein with rabbit antibodies against gB peptide containing the RGD sequence. In contrast, adhesion was not blocked by the preincubation of plate-bound gBdeltaTM protein with heparin, suggesting that the adhesion is mediated by the RGD amino acids of gB, which is independent of the heparin-binding domain of gB. Integrin-ligand interaction is dependent on divalent cations. Adhesion induced by the gBdeltaTM was blocked by EDTA, thus suggesting the role of integrins in the observed adhesions. Focal adhesion components such as FAK and paxillin were activated by the binding of gBdeltaTM protein to the target cells but not by gBdeltaTM-RGA protein binding. Inhibition of FAK phosphorylation by genistein blocked gBdeltaTM-induced FAK activation and cell adhesion. These findings suggest that HHV-8-gB could mediate cell adhesion via its RGD motif interaction with the cell surface integrin molecules and indicate the induction of cellular signaling pathways, which may play roles in the infection of target cells and in Kaposi's sarcoma pathogenesis.  相似文献   

9.
Cathepsin X binds to cell surface heparan sulfate proteoglycans   总被引:3,自引:0,他引:3  
Glycosaminoglycans have been shown to be important regulators of activity of several papain-like cathepsins. Binding of glycosaminoglycans to cathepsins thus directly affects catalytic activity, stability or the rate of autocatalytic activation of cathepsins. The interaction between cathepsin X and heparin has been revealed by affinity chromatography using heparin-Sepharose. Conformational changes were observed to accompany heparin-cathepsin X interaction by far UV-circular dichroism at both acidic (4.5) and neutral (7.4) pH. These conformational changes promoted a 4-fold increase in the dissociation constant of the enzyme-substrate interaction and increased 2.6-fold the kcat value also. The interaction between cathepsin X and heparin or heparan sulfate is specific since dermatan sulfate, chondroitin sulfate, and hyaluronic acid had no effect on the cathepsin X activity. Using flow cytometry cathepsin X was shown to bind cell surface heparan sulfate proteoglycans in wild-type CHO cells but not in CHO-745 cells, which are deficient in glycosaminoglycan synthesis. Moreover, fluorescently labeled cathepsin X was shown by confocal microscopy to be endocytosed by wild-type CHO cells, but not by CHO-745 cells. These results demonstrate the existence of an endocytosis mechanism of cathepsin X by the CHO cells dependent on heparan sulfate proteoglycans present at the cell surface, thus strongly suggesting that heparan sulfate proteoglycans can regulate the cellular trafficking and the enzymatic activity of cathepsin X.  相似文献   

10.
Virion glycoproteins gB, gD, and gH/gL play essential roles for herpes simplex virus (HSV) entry. The function of gD is to interact with a cognate receptor, and soluble forms of gD block HSV entry by tying up cell surface receptors. Both gB and the nonessential gC interact with cell surface heparan sulfate proteoglycan (HSPG), promoting viral attachment. However, cells deficient in proteoglycan synthesis can still be infected by HSV. This suggests another function for gB. We found that a soluble truncated form of gB bound saturably to the surface of Vero, A431, HeLa, and BSC-1 cells, L-cells, and a mouse melanoma cell line expressing the gD receptor nectin-1. The HSPG analog heparin completely blocked attachment of the gC ectodomain to Vero cells. In contrast, heparin only partially blocked attachment of soluble gB, leaving 20% of the input gB still bound even at high concentrations of inhibitor. Moreover, heparin treatment removed soluble gC but not gB from the cell surface. These data suggest that a portion of gB binds to cells independently of HSPG. In addition, gB bound to two HSPG-deficient cell lines derived from L-cells. Gro2C cells are deficient in HSPG, and Sog9 cells are deficient in HSPG, as well as chondroitin sulfate proteoglycan (CSPG). To identify particular gB epitopes responsible for HSPG-independent binding, we used a panel of monoclonal antibodies (MAbs) to gB to block gB binding. Only those gB MAbs that neutralized virus blocked binding of soluble gB to the cells. HSV entry into Gro2C and Sog9 cells was reduced but still detectable relative to the parental L-cells, as previously reported. Importantly, entry into Gro2C cells was blocked by purified forms of either the gD or gB ectodomain. On a molar basis, the extent of inhibition by gB was similar to that seen with gD. Together, these results suggest that soluble gB binds specifically to the surface of different cell types independently of HSPG and CSPG and that by doing so, the protein inhibits entry. The results provide evidence for the existence of a cellular entry receptor for gB.  相似文献   

11.
We previously showed that vaccinia virus infection of BSC40 cells was blocked by soluble heparin, suggesting that cell surface heparan sulfate mediates vaccinia virus binding (C.-S. Chung, J.-C. Hsiao, Y.-S. Chang, and W. Chang, J. Virol. 72:1577–1585, 1998). In this study, we extended our previous work and demonstrated that soluble A27L protein bound to heparan sulfate on cells and interfered with vaccinia virus infection at a postbinding step. In addition, we investigated the structure of A27L protein that provides for its binding to heparan sulfate on cells. A mutant of A27L protein, named D-A27L, devoid of a cluster of 12 amino acids rich in basic residues, was constructed. In contrast to the soluble A27L protein, purified D-A27L protein was inactive in all of our assays, including binding to heparin in vitro, binding to heparan sulfate on cells, and the ability to block virus infection. These data demonstrated that the N-terminal region acts as a glycosaminoglycan (GAG)-binding domain critical for A27L protein binding to cells. Previously A27L protein was thought to be involved in fusion of virus-infected cells induced by acid treatment. When we investigated whether cell surface GAGs also participate in A27L-dependent fusion, our results indicated that soluble A27L protein blocked cell fusion, whereas D-A27L protein did not. Taken together, the results therefore demonstrated that A27L-mediated cell fusion is triggered by its interaction with cell surface GAGs through the N-terminal domain.  相似文献   

12.
Vaccinia virus has a wide host range and infects mammalian cells of many different species. This suggests that the cell surface receptors for vaccinia virus are ubiquitously expressed and highly conserved. Alternatively, different receptors are used for vaccinia virus infection of different cell types. Here we report that vaccinia virus binds to heparan sulfate, a glycosaminoglycan (GAG) side chain of cell surface proteoglycans, during virus infection. Soluble heparin specifically inhibits vaccinia virus binding to cells, whereas other GAGs such as condroitin sulfate or dermantan sulfate have no effect. Heparin also blocks infections by cowpox virus, rabbitpox virus, myxoma virus, and Shope fibroma virus, suggesting that cell surface heparan sulfate could be a general mediator of the entry of poxviruses. The biochemical nature of the heparin-blocking effect was investigated. Heparin analogs that have acetyl groups instead of sulfate groups also abolish the inhibitory effect, suggesting that the negative charges on GAGs are important for virus infection. Furthermore, BSC40 cells treated with sodium chlorate to produce undersulfated GAGs are more refractory to vaccinia virus infection. Taken together, the data support the notion that cell surface heparan sulfate is important for vaccinia virus infection. Using heparin-Sepharose beads, we showed that vaccinia virus virions bind to heparin in vitro. In addition, we demonstrated that the recombinant A27L gene product binds to the heparin beads in vitro. This recombinant protein was further shown to bind to cells, and such interaction could be specifically inhibited by soluble heparin. All the data together indicated that A27L protein could be an attachment protein that mediates vaccinia virus binding to cell surface heparan sulfate during viral infection.  相似文献   

13.
Bone morphogenetic proteins (BMPs) are expressed broadly and regulate a diverse array of developmental events in vivo. Essential to many of these functions is the establishment of activity gradients of BMP, which provide positional information that influences cell fates. Secreted polypeptides, such as Noggin, bind BMPs and inhibit their function by preventing interaction with receptors on the cell surface. These BMP antagonists are assumed to be diffusible and therefore potentially important in the establishment of BMP activity gradients in vivo. Nothing is known, however, about the potential interactions between Noggin and components of the cell surface or extracellular matrix that might limit its diffusion. We have found that Noggin binds strongly to heparin in vitro, and to heparan sulfate proteoglycans on the surface of cultured cells. Noggin is detected only on the surface of cells that express heparan sulfate, can be specifically displaced from cells by heparin, and can be directly cross-linked to a cell surface proteoglycan in culture. Heparan sulfate-bound Noggin remains functional and can bind BMP4 at the plasma membrane. A Noggin mutant with a deletion in a putative heparin binding domain has reduced binding to heparin and does not bind to the cell surface but has preserved BMP binding and antagonist functions. Our results imply that interactions between Noggin and heparan sulfate proteoglycans in vivo regulate diffusion and therefore the formation of gradients of BMP activity.  相似文献   

14.
The soluble (Gs) and membrane-bound (Gm) forms of human respiratory syncytial virus (HRSV) attachment protein were purified by immunoaffinity chromatography from cultures of HEp-2 cells infected with vaccinia virus recombinants expressing either protein. Sucrose gradient centrifugation indicated that Gs, which is secreted into the culture medium, remains monomeric, whereas Gm is an oligomer, probably a homotetramer. Nevertheless, Gs was capable of binding to the surface of cells in vitro, as assessed by a flow cytometry-based binding assay. The attachment of Gs to cells was inhibited by previous heparinase treatment of living cells, and Gs did not bind to CHO cell mutants defective in proteoglycan biosynthesis. Thus, Gs, as previously reported for the G protein of intact virions, binds to glycosaminoglycans presented at the cell surface as proteoglycans. Deletion of a previously reported heparin binding domain from Gs protein substantially inhibited its ability to bind to cells, but the remaining level of binding was still sensitive to heparinase treatment, suggesting that other regions of the Gs molecule may contribute to attachment to proteoglycans. The significance of these results for HRSV infection is discussed.  相似文献   

15.
The conservation of positively charged residues in the N terminus of the hepatitis C virus (HCV) envelope glycoprotein E2 suggests an interaction of the viral envelope with cell surface glycosaminoglycans. Using recombinant envelope glycoprotein E2 and virus-like particles as ligands for cellular binding, we demonstrate that cell surface heparan sulfate proteoglycans (HSPG) play an important role in mediating HCV envelope-target cell interaction. Heparin and liver-derived highly sulfated heparan sulfate but not other soluble glycosaminoglycans inhibited cellular binding and entry of virus-like particles in a dose-dependent manner. Degradation of cell surface heparan sulfate by pretreatment with heparinases resulted in a marked reduction of viral envelope protein binding. Surface plasmon resonance analysis demonstrated a high affinity interaction (KD 5.2 x 10-9 m) of E2 with heparin, a structural homologue of highly sulfated heparan sulfate. Deletion of E2 hypervariable region-1 reduced E2-heparin interaction suggesting that positively charged residues in the N-terminal E2 region play an important role in mediating E2-HSPG binding. In conclusion, our results demonstrate for the first time that cellular binding of HCV envelope requires E2-HSPG interaction. Docking of E2 to cellular HSPG may be the initial step in the interaction between HCV and the cell surface resulting in receptor-mediated entry and initiation of infection.  相似文献   

16.
The mechanism of heparan sulfate (HS)-mediated human immunodeficiency virus type 1 (HIV-1) binding to and infection of T cells was investigated with a clone (H9h) of the T-cell line H9 selected on the basis of its high level of cell surface CD4 expression. Semiquantitative PCR analysis revealed that enzymatic removal of cell surface HS by heparitinase resulted in a reduction of the amount of HIV-1 DNA present in H9h cells 4 h after exposure to virus. Assays of the binding of recombinant envelope proteins to H9h cells demonstrated a structural requirement for an oligomeric form of gp120/gp41 for HS-dependent binding to the cell surface. The ability of the HIV-1 envelope to bind simultaneously to HS and CD4 was shown by immunoprecipitation of HS with either antienvelope or anti-CD4 antibodies from 35SO4(2-)-labeled H9h cells that had been incubated with soluble gp140. Soluble HS blocked the binding of monoclonal antibodies that recognize the V3 and C4 domains of the envelope protein to the surface of H9 cells chronically infected with HIV-1IIIB. The V3 domain was shown to be the major site of envelope-HS interaction by examining the effects of both antienvelope monoclonal antibodies and heparitinase on the binding of soluble gp140 to H9h cells.  相似文献   

17.
The intracellular amastigote form of leishmania is responsible for the cell-to-cell spread of leishmania infection in the mammalian host. In this report, we identify a high-affinity, heparin-binding activity on the surface of the amastigote form of leishmania. Amastigotes of Leishmania amazonensis bound approximately 120,000 molecules of heparin per cell, with a Kd of 8.8 x 10(-8) M. This heparin-binding activity mediates the adhesion of amastigotes to mammalian cells via heparan sulfate proteoglycans, which are expressed on the surface of mammalian cells. Amastigotes bound efficiently to a variety of adherent cells which express cell-surface proteoglycans. Unlike wild-type CHO cells, which bound amastigotes avidly, CHO cells with genetic deficiencies in heparan sulfate proteoglycan biosynthesis or cells treated with heparitinase failed to bind amastigotes even at high parasite-input dosages. Cells which express normal levels of undersulfated heparan bound amastigotes nearly as efficiently as did wild-type cells. The adhesion of amastigotes to wild-type nonmyeloid cells was almost completely inhibited by the addition of micromolar amounts of soluble heparin or heparan sulfate but not by the addition of other sulfated polysaccharides.l Binding of amastigotes to macrophages, however, was inhibited by only 60% after pretreatment of amastigotes with heparin, suggesting that macrophages have an additional mechanism for recognizing amastigotes. These results suggest that leishmania amastigotes express a high-affinity, heparin-binding activity on their surface which can interact with heparan sulfate proteoglycans on mammalian cells. This interaction may represent an important first step in the invasion of host cells by amastigotes.  相似文献   

18.
The purpose of this study was to identify the herpes simplex virus glycoprotein(s) that mediates the adsorption of virions to cells. Because heparan sulfate moieties of cell surface proteoglycans serve as the receptors for herpes simplex virus adsorption, we tested whether any of the viral glycoproteins could bind to heparin-Sepharose in affinity chromatography experiments. Two glycoproteins, gB and gC, bound to heparin-Sepharose and could be eluted with soluble heparin. In order to determine whether virions devoid of gC or gB were impaired for adsorption, we quantitated the binding of wild-type and mutant virions to cells. We found that at equivalent input concentrations of purified virions, significantly fewer gC-negative virions bound to cells than did wild-type or gB-negative virions. In addition, the gC-negative virions that bound to cells showed a significant delay in penetration compared with wild-type virus. The impairments in adsorption and penetration of the gC-negative virions can account for their reduced PFU/particle ratios, which were found to be about 5 to 10% that of wild-type virions, depending on the host cell. Although gC is dispensable for replication of herpes simplex virus in cell culture, it clearly facilitates virion adsorption and enhances infectivity by about a factor of 10.  相似文献   

19.
Human herpesvirus-8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus K8.1 gene encodes for two immunogenic glycoproteins, gpK8.1A and gpK8.1B, originating from spliced messages. The 228-amino-acid (aa) gpK8.1A is the predominant form associated with the virion envelope, consisting of a 167-aa region identical to gpK8.1B and a 61-aa unique region (L. Zhu, V. Puri, and B. Chandran, Virology 262:237-249, 1999). HHV-8 has a broad in vivo and in vitro cellular tropism, and our studies showed that this may be in part due to HHV-8's interaction with the ubiquitous host cell surface molecule, heparan sulfate (HS). Since HHV-8 K8.1 gene is positionally colinear to the Epstein-Barr virus (EBV) gene encoding the gp350/gp220 protein involved in EBV binding to the target cells, gpK8.1A's ability to interact with the target cells was examined. The gpK8.1A without the transmembrane and carboxyl domains (DeltaTMgpK8.1A) was expressed in a baculovirus system and purified. Radiolabeled purified DeltaTMgpK8.1A protein bound to the target cells, which was blocked by unlabeled DeltaTMgpK8.1A. Unlabeled DeltaTMgpK8.1A blocked the binding of [(3)H]thymidine-labeled purified HHV-8 to the target cells. Binding of radiolabeled DeltaTMgpK8.1A to the target cells was inhibited in a dose-dependent manner by soluble heparin, a glycosaminoglycan (GAG) closely related to HS, but not by other GAGs such as chondroitin sulfate A and C, N-acetyl heparin and de-N-sulfated heparin. Cell surface absorbed DeltaTMgpK8.1A was displaced by soluble heparin. Radiolabeled DeltaTMgpK8.1A also bound to HS expressing Chinese hamster ovary (CHO-K1) cells, and binding to mutant CHO cell lines deficient in HS was significantly reduced. The DeltaTMgpK8.1A specifically bound to heparin-agarose beads, which was inhibited by HS and heparin, but not by other GAGs. Virion envelope-associated gpK8.1A was specifically precipitated by heparin-agarose beads. These findings suggest that gpK8.1A interaction with target cells involves cell surface HS-like moieties, and HHV-8 interaction with HS could be in part mediated by virion envelope-associated gpK8.1A.  相似文献   

20.
Human herpesvirus 6 (HHV-6) and HHV-7 are closely related betaherpesviruses that encode a number of genes with no known counterparts in other herpesviruses. The product of one such gene is the HHV-6 glycoprotein gp82-105, which is a major virion component and a target for neutralizing antibodies. A 1.7-kb cDNA clone from HHV-7 was identified which contains a large open reading frame capable of encoding a predicted primary translational product of 468 amino acids (54 kDa) with 13 cysteine residues and 9 potential N-linked glycosylation sites. This putative protein, which we have termed gp65, was homologous to HHV-6 gp105 (30% identity) and contained a single potential membrane-spanning domain located near its amino terminus. Comparison of the cDNA sequence with that of the viral genome revealed that the gene encoding gp65 contains eight exons, spanning almost 6 kb of the viral genome at the right (3') end of the HHV-7 genome. Northern (RNA) blot analysis with poly(A)(+) RNA from HHV-7-infected cells revealed that the cDNA insert hybridized to a single major RNA species of 1.7 kb. Antiserum raised against a purified, recombinant form of gp65 recognized a protein of roughly 65 kDa in sucrose density gradient-purified HHV-7 preparations; treatment with PNGase F reduced this glycoprotein to a putative precursor of approximately 50 kDa. Gp65-specific antiserum also neutralized the infectivity of HHV-7, while matched preimmune serum did not do so. Finally, analysis of the biochemical properties of recombinant gp65 revealed a specific interaction with heparin and heparan sulfate proteoglycans and not with closely related molecules such as N-acetylheparin and de-N-sulfated heparin. At least two domains of the protein were found to contribute to heparin binding. Taken together, these findings suggest that HHV-7 gp65 may contribute to viral attachment to cell surface proteoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号