共查询到20条相似文献,搜索用时 0 毫秒
1.
Purification and Characterization of Microsomal Cytochrome b(5) and NADH Cytochrome b(5) Reductase from Pisum sativum
下载免费PDF全文

In this communication we document the reproducible protocols for the purification of milligram quantities of cytochrome b5 and NADH-cytochrome b5 reductase from the microsomal fraction of Pisum sativum. The cytochrome b5 component of this NADH linked electron transport chain was found to have a molecular mass of 16,400 daltons and the reductase a molecular mass of 34,500 daltons. These components could be reconstituted into a functional NADH oxidase activity active in the reduction of exogenous cytochrome c or ferricyanide. In the latter assay the purified reductase exhibited a turnover number of 22,000 per minute. The amino-terminal amino acid sequence of the cytochrome b5 component was determined by sequential Edmund degredation, thus providing crucial information for the efficient cloning of this central protein of plant microsomal electron transfer. 相似文献
2.
Seabold GK Wang PY Chang K Wang CY Wang YX Petralia RS Wenthold RJ 《The Journal of biological chemistry》2008,283(13):8395-8405
Synaptic adhesion-like molecules (SALMs) are a newly discovered family of adhesion molecules that play roles in synapse formation and neurite outgrowth. The SALM family is comprised of five homologous molecules that are expressed largely in the central nervous system. SALMs 1-3 contain PDZ-binding domains, whereas SALMs 4 and 5 do not. We are interested in characterizing the interactions of the SALMs both among the individual members and with other binding partners. In the present study, we focused on the interactions formed by the five SALM members in rat brain and heterologous cells. In brain, we found that SALMs 1-3 strongly co-immunoprecipitated with each other, whereas SALMs 4 and 5 did not, suggesting that SALMs 4 and 5 mainly form homomeric complexes. In heterologous cells transfected with SALMs, co-immunoprecipitation studies showed that all five SALMs form heteromeric and homomeric complexes. We also determined if SALMs could form trans-cellular associations between transfected heterologous cells. Both SALMs 4 and 5 formed homophilic, but not heterophilic associations, whereas no trans associations were formed by the other SALMs. The ability of SALM4 to form trans interactions is due to its extracellular N terminus because chimeras of SALM4 N terminus and SALM2 C terminus can form trans interactions, whereas chimeras of SALM2 N terminus and SALM4 C terminus cannot. Co-culture experiments using HeLa cells and rat hippocampal neurons expressing the SALMs showed that SALM4 is recruited to points of contact between the cells. In neurons, these points of contact were seen in both axons and dendrites. 相似文献
3.
4.
Heyka H. Jakobs Michal Mikula Antje Havemeyer Adriana Strzalkowska Monika Borowa-Chmielak Artur Dzwonek Marta Gajewska Ewa E. Hennig Jerzy Ostrowski Bernd Clement 《PloS one》2014,9(8)
The mitochondrial amidoxime reducing component mARC is the fourth mammalian molybdenum enzyme. The protein is capable of reducing N-oxygenated structures, but requires cytochrome b5 and cytochrome b5 reductase for electron transfer to catalyze such reactions. It is well accepted that the enzyme is involved in N-reductive drug metabolism such as the activation of amidoxime prodrugs. However, the endogenous function of the protein is not fully understood. Among other functions, an involvement in lipogenesis is discussed. To study the potential involvement of the protein in energy metabolism, we tested whether the mARC protein and its partners are regulated due to fasting and high fat diet in mice. We used qRT-PCR for expression studies, Western Blot analysis to study protein levels and an N-reductive biotransformation assay to gain activity data. Indeed all proteins of the N-reductive system are regulated by fasting and its activity decreases. To study the potential impact of these changes on prodrug activation in vivo, another mice experiment was conducted. Model compound benzamidoxime was injected to mice that underwent fasting and the resulting metabolite of the N-reductive reaction, benzamidine, was determined. Albeit altered in vitro activity, no changes in the metabolite concentration in vivo were detectable and we can dispel concerns that fasting alters prodrug activation in animal models. With respect to high fat diet, changes in the mARC proteins occur that result in increased N-reductive activity. With this study we provide further evidence that the endogenous function of the mARC protein is linked with lipid metabolism. 相似文献
5.
Hwei-Ming Peng Jiayan Liu Sarah E. Forsberg Hong T. Tran Sean M. Anderson Richard J. Auchus 《The Journal of biological chemistry》2014,289(49):33838-33849
Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: 84EVLIKK89-b5: 53EQAGGDATENFEDVGHSTDAR73 and CYP17A1-R347K: 341TPTISDKNR349-b5: 40FLEEHPGGEEVLR52. Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis. 相似文献
6.
Yaghootfam A Sorkalla T Häberlein H Gieselmann V Kappler J Eckhardt M 《Biochemistry》2007,46(32):9260-9269
Cerebroside sulfotransferase (CST) catalyzes the 3'-sulfation of galactose residues in several glycolipids. Its major product in the mammalian brain is sulfatide, which is an essential myelin component. Using epitope-tagged variants, murine CST was found to localize to the Golgi apparatus, but in contrast to previous assumptions, not to the trans-Golgi network. An examination of enhanced green fluorescent protein (EGFP)-tagged CST suggests that CST forms homodimers and that dimerization is mediated by the lumenal domain of the enzyme, as shown by immunoprecipitation and density gradient centrifugation. In order to verify that dimerization of CST observed by biochemical methods reflects the behavior of the native protein within living cells, the mobility of CST-EGFP was examined using fluorescence correlation spectroscopy. These experiments confirmed the homodimerization of CST-EGFP fusion proteins in vivo. In contrast to full-length CST, a fusion protein of the amino-terminal 36 amino acids of CST fused to EGFP was exclusively found as a monomer but nevertheless showed Golgi localization. 相似文献
7.
Cytochrome b5-mediated redox cycling of estrogen 总被引:1,自引:0,他引:1
Previously, we have demonstrated microsomal cytochrome P450-catalyzed redox cycling of estrogens. In this study, we investigated the role of cytochrome b5 in redox cycling in order to obtain a full understanding of enzymatic contributions to redox reactions of estrogens. Pure cytochrome P450c and hydrogen peroxide or cumene hydroperoxide oxidized diethylstilbestrol (DES) to diethylstilbestrol-4',4"-quinone (DES Q). This oxidation by H2O2 was doubled by addition of cytochrome b5 to cytochrome P450c (molar ratio of 1:4), but did not proceed with cytochrome b5 alone. The stimulation by cytochrome b5 of the cytochrome P450c-catalyzed oxidation of DES to DES Q occurred via modulation of the Vmax of cytochrome P450c rather than of the Km. DES Q was reduced to DES by purified cytochrome b5 and NADH-dependent cytochrome b5 reductase. Pretreatment of microsomes with an antibody to cytochrome b5 reductase inhibited microsomal NADH-dependent reduction of DES Q to DES by 55%. Cytochrome b5 likely participates in the oxidation of DES to DES Q by interacting with cytochrome P450c and in the reduction of DES Q to DES by interacting with cytochrome b5 reductase. Thus, the study demonstrates that cytochrome b5 plays an active role in biological oxidation and reduction reactions. 相似文献
8.
Cytochrome b5 induced flip-flop of phosphatidylethanolamine (PE) in sonicated vesicles prepared from a 9:1 mixture of phosphatidylcholine (PC) to phosphatidylethanolamine was determined as follows. First, vesicles having a nonequilibrium distribution of PE across the bilayer were prepared by amidinating the external amino groups with isethionyl acetimidate. Amidinated cytochrome b5 was then added, and after the protein was completely bound, the rate of appearance of fresh PE on the outer surface was determined by removing aliquots at timed intervals and titrating the external amino groups with trinitrobenzenesulfonic acid. The results show an initial rapid phase of flip-flop (especially in the presence of salt) followed by a very slow phase, at 25 degrees C. Similar results were obtained when cytochrome b5 was introduced into the amidinated vesicles by spontaneous transfer from PC donor vesicles. These results indicate that the accumulation of the transferable ("loose") form of cytochrome b5 on the outer surface of a vesicle causes a transient, global destabilization of the bilayer that is relieved by lipid flip-flop. We speculate that this mechanism may be a significant driving force for the transfer of amphipathic molecules across membranes. 相似文献
9.
A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms. 相似文献
10.
Cytochrome b(5) is a major reductant in vivo of human indoleamine 2,3-dioxygenase expressed in yeast
Vottero E Mitchell DA Page MJ MacGillivray RT Sadowski IJ Roberge M Mauk AG 《FEBS letters》2006,580(9):2265-2268
The evolutionary relationship of indoleamine 2,3-dioxygenase (IDO) to some gastropod myoglobins suggests that IDO may undergo autoxidation in vivo such that one or more currently unidentified electron donors are required to maintain IDO heme iron in the active, ferrous state. To evaluate this hypothesis we have used yeast knockout mutants in combination with a recently developed yeast growth assay for IDO activity in vivo to demonstrate a role for cytochrome b(5) and cytochrome b(5) reductase in maintaining IDO activity in vivo. 相似文献
11.
The cytochrome reductase system solubilized from microsomes exhibits monophasic reduction kinetics over the temperature range 15 ° to ?25 °C in aqueous/ethylene glycol co-solvent, whereas in intact microsomes, the process becomes increasingly heterogeneous below 0 °C, reflecting heterogeneities in membrane structure observable as distributions in reaction rates and activation energies. 相似文献
12.
S K George Y H Xu L A Benson L Pratsch R Peters G M Ihler 《Biochimica et biophysica acta》1991,1066(2):131-143
Both cytochrome b5, isolated from rabbit liver microsomes, and LacZ:HP, a recombinant protein consisting of enzymatically active Escherichia coli beta-galactosidase coupled to the C-terminal membrane-anchoring hydrophobic domain of cytochrome b5, were shown to spontaneously associate with the plasma membranes of erythrocytes and 3T3 cells. Association was promoted by low pH values, but proceeded satisfactorily over several hours at physiological pH and temperature. About 150,000 cytochrome b5 molecules or 100,000 LacZ:HP molecules could be associated per erythrocyte. These proteins were not removed from the membrane by extensive washing, even at high ionic strength. After incubation with fluorescently labeled cytochrome b5 or LacZ:HP, cells displayed fluorescent membranes. The lateral mobility of fluorescently labeled cytochrome b5 and LacZ:HP was measured by photo-bleaching techniques. In the plasma membrane of erythrocytes and 3T3 cells, the apparent lateral diffusion coefficient D ranged from 1.0.10(-9) to 8.10(-9) cm2 s-1 with a mobile fraction M between 0.4 and 0.6. The lateral mobility of these proteins closely resembled that reported for lipid-anchored proteins and was much higher than that reported for Band 3, an erythrocyte membrane-spanning protein with a large cytoplasmic domain. These results suggest that the hydrophobic domain of cytochrome b5 could be employed as a universal, laterally mobile membrane anchor to associate a variety of diagnostically and therapeutically useful recombinant proteins with cells. 相似文献
13.
Jan Pyrih Karel Harant Eva Martincová Robert Sutak Emmanuel Lesuisse Ivan Hrdy Jan Tachezy 《Eukaryotic cell》2014,13(2):231-239
The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated. 相似文献
14.
15.
16.
Richard Malkin 《Photosynthesis research》1992,33(2):121-136
All photosynthetic membranes contain a cytochrome bc
1 or b
6
f complex that catalyzes the oxidation of quinols and the reduction of a high-potential electron carrier, such as cytochrome c
2 or plastocyanin. The cytochrome complex also functions in the translocation of protons across the membrane and as a consequence, establishes the proton motive force that is used for the synthesis of ATP. The structure and function of the cytochrome complexes are first reviewed in this chapter. Amino acid sequence information for almost all of the protein subunits of these complexes is now available, and these allow for a detailed consideration of functional domains in the protein subunits and for a further discussion of the evolution of the cytochrome complex in photosynthetic organisms. 相似文献
17.
Nicotianamine forms complexes with Zn(II) in vivo 总被引:2,自引:0,他引:2
Trampczynska A Küpper H Meyer-Klaucke W Schmidt H Clemens S 《Metallomics : integrated biometal science》2010,2(1):57-66
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators. 相似文献
18.
19.
A full-length cytochrome b pseudogene was found in rodents; it has apparently been translocated from a mitochondrion to the nuclear genome in the subfamily
Arvicolinae. The pseudogene (ψcytb) differed from its mitochondrial counterpart at 201 of 1143 sites (17.6%) and by four indels. Cumulative evidence suggests
that the pseudogene has been translocated to the nucleus. Phylogenetic reconstruction indicates that the pseudogene arose
before the diversification of M. arvalis/M. rossiaemeridionalis from M. oeconomus, but after the divergence of the peromyscine/sigmodontine/arvicoline clades some ∼10 MYA. Published rates of divergence between
mitochondrial genes and their nuclear pseudogenes suggest that the translocation of this mitochondrial gene to the nuclear
genome occurred some 6 MYA, in agreement with the phylogenetic evidence.
Received: 16 January 1998 / Accepted: 18 July 1998 相似文献
20.
D. Fernando Estrada Jennifer S. Laurence Emily E. Scott 《The Journal of biological chemistry》2013,288(23):17008-17018
The membrane heme protein cytochrome b5 (b5) can enhance, inhibit, or have no effect on cytochrome P450 (P450) catalysis, depending on the specific P450, substrate, and reaction conditions, but the structural basis remains unclear. Here the interactions between the soluble domain of microsomal b5 and the catalytic domain of the bifunctional steroidogenic cytochrome P450 17A1 (CYP17A1) were investigated. CYP17A1 performs both steroid hydroxylation, which is unaffected by b5, and an androgen-forming lyase reaction that is facilitated 10-fold by b5. NMR chemical shift mapping of b5 titrations with CYP17A1 indicates that the interaction occurs in an intermediate exchange regime and identifies charged surface residues involved in the protein/protein interface. The role of these residues is confirmed by disruption of the complex upon mutagenesis of either the anionic b5 residues (Glu-48 or Glu-49) or the corresponding cationic CYP17A1 residues (Arg-347, Arg-358, or Arg-449). Cytochrome b5 binding to CYP17A1 is also mutually exclusive with binding of NADPH-cytochrome P450 reductase. To probe the differential effects of b5 on the two CYP17A1-mediated reactions and, thus, communication between the superficial b5 binding site and the buried CYP17A1 active site, CYP17A1/b5 complex formation was characterized with either hydroxylase or lyase substrates bound to CYP17A1. Significantly, the CYP17A1/b5 interaction is stronger when the hydroxylase substrate pregnenolone is present in the CYP17A1 active site than when the lyase substrate 17α-hydroxypregnenolone is in the active site. These findings form the basis for a clearer understanding of this important interaction by directly measuring the reversible binding of the two proteins, providing evidence of communication between the CYP17A1 active site and the superficial proximal b5 binding site. 相似文献