首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice.  相似文献   

4.
5.
The results of recent studies using selective agonists for peroxisome proliferator-activated receptor beta (PPARbeta) suggest that this receptor may have a role in regulating levels of serum lipids in animal models of obesity and insulin resistance. To further examine this possibility, serum lipid profiles of mice lacking a functional PPARbeta receptor were determined. PPARbeta-null mice maintained on either normal chow or a 10-week high fat (HF) diet, a condition that has been shown to induce insulin resistance and obesity in mice, have elevated levels of serum triglycerides primarily associated with very low density lipoprotein (VLDL) with no difference in either total cholesterol or phospholipids. Consistent with this finding, PPARbeta-null mice on a HF-diet were shown to have an increased rate of hepatic VLDL production as well as lowered lipoprotein lipase activity in serum compared with wild-type controls. The latter parallels an increase in the hepatic expression of the genes encoding angiopoietin-like proteins 3 and 4 in PPARbeta-null mice on a HF diet, both proteins of which have recently been shown to inhibit lipoprotein lipase (LPL) activity in vivo. Consistent with elevated VLDL production, a marked increase in plasma VLDL apoB48, -E, -AI, and -AII, as well as a sharp depletion of the hepatic lipid stores was also found in PPARbeta-null mice. In addition, PPARbeta-null mice on a HF diet were shown to have increased adiposity, despite lower total body weight. Together, these results indicate a clear role for PPARbeta in regulating levels of serum triglycerides in mice on a high fat Western diet by modulating both VLDL production and LPL-mediated catabolism of VLDL-triglycerides and also suggest a potential therapeutic role for PPARbeta in the improvement of serum lipids in the setting of metabolic syndrome.  相似文献   

6.
The liver plays a central role in the control of glucose homeostasis and is subject to complex regulation by substrates, insulin, and other hormones. To investigate the effect of the loss of direct insulin action in liver, we have used the Cre-loxP system to inactivate the insulin receptor gene in hepatocytes. Liver-specific insulin receptor knockout (LIRKO) mice exhibit dramatic insulin resistance, severe glucose intolerance, and a failure of insulin to suppress hepatic glucose production and to regulate hepatic gene expression. These alterations are paralleled by marked hyperinsulinemia due to a combination of increased insulin secretion and decreased insulin clearance. With aging, the LIRKO liver exhibits morphological and functional changes, and the metabolic phenotype becomes less severe. Thus, insulin signaling in liver is critical in regulating glucose homeostasis and maintaining normal hepatic function.  相似文献   

7.
Plasma phospholipid transfer protein (PLTP) is thought to be involved in the remodeling of high density lipoproteins (HDL), which are atheroprotective. It is also involved in the metabolism of very low density lipoproteins (VLDL). Hence, PLTP is thought to be an important factor in lipoprotein metabolism and the development of atherosclerosis. We have overexpressed PLTP in mice heterozygous for the low density lipoprotein (LDL) receptor, a model for atherosclerosis. We show that increased PLTP activity results in a dose-dependent decrease in HDL, and a moderate stimulation of VLDL secretion (相似文献   

8.
Epidemiological studies have associated low circulating levels of the adipokine adiponectin with multiple metabolic disorders, including metabolic syndrome, obesity, insulin resistance, type II diabetes, and cardiovascular disease. Recently, we reported that adiponectin selectively overexpressed in mouse macrophages can improve insulin sensitivity and protect against inflammation and atherosclerosis. To further investigate the role of adiponectin and macrophages on lipid and lipometabolism in vivo, we engineered the expression of adiponectin in mouse macrophages (Ad-TG mice) and examined effects on plasma lipoproteins and on the expression levels of genes involved in lipoprotein metabolism in tissues. Compared with the wild-type (WT) mice, Ad-TG mice exhibited significantly lower levels of plasma total cholesterol (-21%, P < 0.05) due to significantly decreased LDL (-34%, P < 0.05) and VLDL (-32%, P < 0.05) cholesterol concentrations together with a significant increase in HDL cholesterol (+41%, P < 0.05). Further studies investigating potential mechanisms responsible for the change in lipoprotein cholesterol profile revealed that adiponectin-producing macrophages altered expression of key genes in liver tissue, including apoA1, apoB, apoE, the LDL receptor, (P < 0.05), and ATP-binding cassette G1 (P < 0.01). In addition, Ad-TG mice also exhibited higher total and high-molecular-weight adipnection levels in plasma and increased expression of the anti-inflammatory cytokine IL-10 as well as a decrease in the proinflammatory cytokine IL-6 in adipose tissue. These results indicate that macrophages engineered to produce adiponectin can influence in vivo gene expression in adipose tissue in a manner that reduces inflammation and macrophage infiltration and in liver tissue in a manner that alters the circulating lipoprotein profile, resulting in a decrease in VLDL and LDL and an increase in HDL cholesterol. The data support further study addressing the use of genetically manipulated macrophages as a novel therapeutic approach for treatment of cardiometabolic disease.  相似文献   

9.
Cholesterol ester transfer protein (CETP) and apolipoprotein (apo) E are important in peroxisome proliferation activated receptor-α (PPAR-α)-mediated regulation of lipoprotein metabolism. Therefore, popularly used apolipoprotein E knockout mice are not suitable to evaluate PPAR-α agonists. In this study, we aimed to: a) evaluate hamster as a model for insulin resistance, hyperlipidemia and atherosclerosis; and b) investigate the effect of a PPAR-α activator, fenofibrate, in this model. A high fat high cholesterol (HFHC) diet increased serum cholesterol and triglycerides, but inclusion of fenofibrate in the diet decreased cholesterol and proatherogenic lipoproteins, VLDL and LDL, in a time-dependent manner. Concomitantly, serum levels of triglycerides also decreased. These reductions were attributed, in part, to the down-regulation of lipogenic genes and upregulation of lipoprotein lipase. The HFHC diet caused body weight gain and mild insulin resistance, both of which were prevented following the treatments with fenofibrate. Insulin resistance was further investigated in high fructose-fed hamsters. Fenofibrate prevented both hyperinsulinemia and hypertriglyceridemia. The insulin sensitizing activity of fenofibrate appeared to occur via reductions in protein tyrosine phophatase-1B. To determine whether lowering of lipids by fenofibrate treatment contributed to the reduced risks of developing atherosclerosis in hyperlipidemic hamsters, we measured lipid deposition in the aorta. Our results showed that fenofibrate treatment reduced aortic lipid deposition by 70%. These findings suggest that hamster may be an adequate animal model to evaluate the efficacy of lipid lowering, insulin sensitizing and antiatherosclerotic agents. We also show that fenofibrate is an effective antiatherosclerotic agent in hyperlipidemic hamster model.  相似文献   

10.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

11.
Dyslipoproteinaemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. It is usually characterised by high plasma concentrations of triglyceride-rich and apolipoprotein (apo) B-containing lipoproteins, with depressed concentrations of high-density lipoprotein (HDL). Dysregulation of lipoprotein metabolism in these subjects may be due to a combination of overproduction of very-low-density lipoprotein (VLDL) apoB-100, decreased catabolism of apoB-containing particles, and increased catabolism of HDL apoA-I particles. These abnormalities may be consequent on a global metabolic effect of insulin resistance that increases the flux of fatty acids from adipose tissue to the liver, the accumulation of fat in the liver, the increased hepatic secretion of VLDL-triglycerides and the remodelling of both low-density lipoprotein (LDL) and HDL particles in the circulation; perturbations in lipolytic enzymes and lipid transfer proteins contribute to the dyslipidaemia. Our in vivo understanding of the kinetic defects in lipoprotein metabolism in the metabolic syndrome has been chiefly achieved by ongoing developments in the use of stable isotope tracers and mathematical modelling. Knowledge of the pathophysiology of lipoprotein metabolism in the metabolic syndrome is well complemented by extensive cell biological data. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport in the metabolic syndrome by collectively decreasing the hepatic secretion of VLDL-apoB and the catabolism of HDL apoA-I, as well as by increasing the clearance of LDL-apoB. Pharmacological treatments, such as statins, fibrates or fish oils, can also correct the dyslipidaemia by several mechanisms of action including decreased secretion and increased catabolism of apoB, as well as increased secretion and decreased catabolism of apoA-I. The complementary mechanisms of action of lifestyle and drug therapies support the use of combination regimens to treat dyslipidaemia in the metabolic syndrome.  相似文献   

12.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

13.
PURPOSE OF REVIEW: Dyslipoproteinemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. Recent in-vivo kinetic studies of dyslipidemia in the metabolic syndrome are reviewed here. RECENT FINDINGS: The dysregulation of lipoprotein metabolism may be caused by a combination of overproduction of VLDL apolipoprotein B-100, decreased catabolism of apolipoprotein B-containing particles, and increased catabolism of HDL apolipoprotein A-I particles. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport by collectively decreasing the hepatic secretion of VLDL apolipoprotein B and the catabolism of HDL apolipoprotein A-I, as well as by increasing the clearance of LDL apolipoprotein B. Conventional and new pharmacological treatments, such as statins, fibrates and cholesteryl ester transfer protein inhibitors, can also correct dyslipidemia by several mechanisms, including decreased secretion and increased catabolism of apolipoprotein B, as well as increased secretion and decreased catabolism of apolipoprotein A-I. SUMMARY: Kinetic studies provide a mechanistic insight into the dysregulation and therapy of lipid and lipoprotein disorders. Future research mandates the development of new tracer methodologies with practicable in-vivo protocols for investigating fatty acid turnover, macrophage reverse cholesterol transport, cholesterol transport in plasma, corporeal cholesterol balance, and the turnover of several subpopulations of HDL particles.  相似文献   

14.
Metabolic syndrome is associated with insulin resistance and atherosclerosis. Here, we show that deficiency of one or two alleles of ATM, the protein mutated in the cancer-prone disease ataxia telangiectasia, worsens features of the metabolic syndrome, increases insulin resistance, and accelerates atherosclerosis in apoE-/- mice. Transplantation with ATM-/- as compared to ATM+/+ bone marrow increased vascular disease. Jun N-terminal kinase (JNK) activity was increased in ATM-deficient cells. Treatment of ATM+/+apoE-/- mice with low-dose chloroquine, an ATM activator, decreased atherosclerosis. In an ATM-dependent manner, chloroquine decreased macrophage JNK activity, decreased macrophage lipoprotein lipase activity (a proatherogenic consequence of JNK activation), decreased blood pressure, and improved glucose tolerance. Chloroquine also improved metabolic abnormalities in ob/ob and db/db mice. These results suggest that ATM-dependent stress pathways mediate susceptibility to the metabolic syndrome and that chloroquine or related agents promoting ATM activity could modulate insulin resistance and decrease vascular disease.  相似文献   

15.
Both hyperglycemia and hyperlipidemia have been postulated to increase atherosclerosis in patients with diabetes mellitus. To study the effects of diabetes on lipoprotein profiles and atherosclerosis in a rodent model, we crossed mice that express human apolipoprotein B (HuB), mice that have a heterozygous deletion of lipoprotein lipase (LPL1), and transgenic mice expressing human cholesteryl ester transfer protein (CETP). Lipoprotein profiles due to each genetic modification were assessed while mice were consuming a Western type diet. Fast-protein liquid chromatography analysis of plasma samples showed that HuB/LPL1 mice had increased VLDL triglyceride, and HuB/LPL1/CETP mice had decreased HDL and increased VLDL and IDL/LDL. All strains of mice were made diabetic using streptozotocin (STZ); diabetes did not alter lipid profiles or atherosclerosis in HuB or HuB/LPL1/CETP mice. In contrast, STZ-treated HuB/LPL1 mice were more diabetic, severely hyperlipidemic due to increased cholesterol and triglyceride in VLDL and IDL/LDL, and had more atherosclerosis.  相似文献   

16.
The effects of diabetes and lipoprotein lipase (LpL) on plasma lipids were studied in mice expressing human apolipoprotein B (HuBTg). Our overall objective was to produce a diabetic mouse model in which the sole effects of blood glucose elevation on atherosclerosis could be assessed. Mice were made diabetic by intraperitoneal injection of streptozotocin, which led to a 2- to 2. 5-fold increase in plasma glucose. Lipids were assessed in mice on chow and on an atherogenic Western type diet (WTD), consisting of 21% (wt/wt) fat and 0.15% (wt/wt) cholesterol. Plasma triglyceride and cholesterol were the same in diabetic and non-diabetic mice on the chow diet. On the WTD, male diabetic HuBTg mice had a >50% increase in plasma cholesterol and more very low density lipoprotein (VLDL) cholesterol and triglyceride as assessed by FPLC analysis. A Triton study showed no increase in triglyceride or apolipoprotein B production, suggesting that the accumulation of VLDL was due to a decrease in lipoprotein clearance. Surprisingly, the VLDL increase in these mice was not due to a decrease in LpL activity in postheparin plasma. To test whether LpL overexpression would alter these diabetes-induced lipoprotein changes, HuBTg mice were crossed with mice expressing human LpL in muscle. LpL overexpression reduced plasma triglyceride, but not cholesterol, in male mice on WTD. Aortic root atherosclerosis assessed in 32-week-old mice on the WTD was not greater in diabetic mice. In summary, diabetes primarily increased plasma VLDL in HuBTg mice. LpL activity was not decreased in these animals. However, additional LpL expression eliminated the diabetic lipoprotein changes. These mice did not have more atherosclerosis with diabetes.  相似文献   

17.
Mice (SC), fed a semipurified diet containing cholesterol, cholic acid and sucrose, exhibited, in comparison to control animals (S), an increase in cholesterol, phospholipid and protein of VLDL, LDL1 and LDL2, but triglyceride of the same lipoproteins decreased, as did total plasma triglycerides. Postheparin plasma lipoprotein lipase activity of SC animals was 1.72 times that of S mice. At the same time Intralipid half-life in SC mice was decreased by 52%. Triglyceride secretion rate, after Triton WR 1339 treatment, and liver triglyceride content were reduced in SC animals. HDL mass was decreased in SC mice. Mice (AC) fed a standard diet containing cholesterol showed, in comparison to normal fed animals (A), an increase in cholesterol of VLDL, LDL1 and LDL2 but triglyceride of the same lipoproteins decreased as did total plasma triglycerides. Postheparin plasma lipoprotein lipase activity of AC animals was unmodified as was Intralipid half-life. In AC animals triglyceride secretion rate, after Triton WR 1339 treatment, was reduced but in a less extent than in SC mice. Liver triglyceride was unmodified. HDL mass was decreased in AC mice.  相似文献   

18.
We previously reported that liver-specific overexpression of ABCG5/G8 in mice is not atheroprotective, suggesting that increased biliary cholesterol secretion must be coupled with decreased intestinal cholesterol absorption to increase net sterol loss from the body and reduce atherosclerosis. To evaluate this hypothesis, we fed low density lipoprotein receptor-knockout (LDLr-KO) control and ABCG5/G8-transgenic (ABCG5/G8-Tg)xLDLr-KO mice, which overexpress ABCG5/G8 only in liver, a Western diet containing ezetimibe to reduce intestinal cholesterol absorption. On this dietary regimen, liver-specific ABCG5/G8 overexpression increased hepatobiliary cholesterol concentration and secretion rates (1.5-fold and 1.9-fold, respectively), resulting in 1.6-fold increased fecal cholesterol excretion, decreased hepatic cholesterol, and increased (4.4-fold) de novo hepatic cholesterol synthesis versus LDLr-KO mice. Plasma lipids decreased (total cholesterol, 32%; cholesteryl ester, 32%; free cholesterol, 30%), mostly as a result of reduced non-high density lipoprotein-cholesterol and apolipoprotein B (apoB; 36% and 25%, respectively). ApoB-containing lipoproteins were smaller and lipid-depleted in ABCG5/G8-TgxLDLr-KO mice. Kinetic studies revealed similar 125I-apoB intermediate density lipoprotein/LDL fractional catabolic rates, but apoB production rates were decreased 37% in ABCG5/G8-TgxLDLr-KO mice. Proximal aortic atherosclerosis decreased by 52% (male) and 59% (female) in ABCG5/G8-TgxLDLr-KO versus LDLr-KO mice fed the Western/ezetimibe diet. Thus, increased biliary secretion, resulting from hepatic ABCG5/G8 overexpression, reduces atherogenic risk in LDLr-KO mice fed a Western diet containing ezetimibe. These findings identify distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism and atherosclerosis.  相似文献   

19.
Effects of functional sweeteners on the development of the metabolic syndrome and atherosclerosis are unknown. The objective was to compare the effect of dietary carbohydrate in the form of sucrose (SUCR) to D‐tagatose (TAG; an isomer of fructose currently used as a low‐calorie sweetener) on body weight, blood cholesterol concentrations, hyperglycemia, and atherosclerosis in low‐density lipoprotein receptor deficient (LDLr−/−) mice. LDLr−/− male and female mice were fed either standard murine diet or a diet enriched with TAG or SUCR as carbohydrate sources for 16 weeks. TAG and SUCR diets contained equivalent amounts (g/kg) of protein, fat, and carbohydrate. We measured food intake, body weight, adipocyte diameter, serum cholesterol and lipoprotein concentrations, and aortic atherosclerosis. Macrophage immunostaining and collagen content were examined in aortic root lesions. CONTROL and TAG‐fed mice exhibited similar energy intake, body weights and blood glucose and insulin concentrations, but SUCR‐fed mice exhibited increased energy intake and became obese and hyperglycemic. Adipocyte diameter increased in female SUCR‐fed mice compared to TAG and CONTROL. Male and female SUCR‐fed mice had increased serum cholesterol and triglyceride concentrations compared to TAG and CONTROL. Atherosclerosis was increased in SUCR‐fed mice of both genders compared to TAG and CONTROL. Lesions from SUCR‐fed mice exhibited pronounced macrophage immunostaining and reductions in collagen content compared to TAG and CONTROL mice. These results demonstrate that in comparison to sucrose, equivalent substitution of TAG as dietary carbohydrate does not result in the same extent of obesity, hyperglycemia, hyperlipidemia, and atherosclerosis.  相似文献   

20.
Obesity is a central feature of the metabolic syndrome and is associated with increased risk for insulin resistance and typeII diabetes. Here, we investigated the contribution of human apoliproteinE3 and mouse apoliproteinE to the development of diet-induced obesity in response to western-type diet. Our data show that apolipoproteinE contributes to the development of obesity and other related metabolic disorders, and that human apolipoproteinE3 is more potent than mouse apolipoproteinE in promoting obesity in response to western-type diet. Specifically, we found that apolipoproteinE3 knock-in mice fed western-type diet for 24 weeks became obese and developed hyperglycemia, hyperinsulinemia, hyperleptinemia, glucose intolerance and insulin resistance that were more severe than in C57BL/6 mice. In contrast, apolipoproteinE-deficient mice fed western-type diet for the same period were resistant to diet-induced obesity, had normal plasma glucose, leptin and insulin levels, and exhibited normal responses to glucose tolerance and insulin resistance tests. Furthermore, low-density lipoprotein receptor-deficient mice were more sensitive to the development of diet-induced obesity and insulin resistance than apolipoprotein E-deficient mice, but were still more resistant than C57BL/6 mice, raising the possibility that low-density lipoprotein receptor mediates, at least in part, the effects of apolipoproteinE on obesity. Taken together, our findings suggest that, in addition to other previously identified mechanisms of obesity, apolipoproteinE and possibly the chylomicron pathway are also important contributors to the development of obesity and related metabolic dysfunctions in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号