首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Spiders frequently disperse and colonise habitats through ballooning, a passive aerial dispersal process. Ballooning is pre‐eminent in open habitat spider communities and its propensity can be modulated by habitat conditions and availability, and by life‐history traits such as body size, degree of specialisation, and feeding behaviour. 2. Using spiders from the canopy and understorey of a north‐temperate hardwood forest as a model system, our main objectives were to detect if foliage spiders of a mature forest disperse through ballooning, and identify life‐history traits that influence ballooning propensity. 3. Our results demonstrate that foliage spiders living in the canopy and understorey of a mature forest do balloon, and in some cases have very high ballooning propensities similarly to open field spiders. Species level models showed that small body size had a strong positive effect on ballooning for juveniles of species with large‐bodied adults, while individuals of small‐bodied species initiated ballooning regardless of size, habitat or development stage. A generalised linear mixed model indicated that small size web‐building spiders from the Retro Tibial Apophysis (RTA) and Orbicularia clades had the highest propensity for foliage spiders of this north‐temperate hardwood forest. 4. In conclusion, we provide the first demonstration that forest spiders can have high ballooning propensities and that ballooning propensity is negatively affected by body size and positively affected by the prominent use of silk to catch prey. However, spiders originating from the canopy and understorey of a north‐temperate hardwood forest did not differ in their ballooning propensities.  相似文献   

2.
坝上地区农田及两种恢复生境中蜘蛛多样性与群落特征   总被引:1,自引:0,他引:1  
蜘蛛是农田生态系统中重要的自然天敌,其生物多样性及群落特征直接决定了农田的害虫控制等生态系统服务功能质量。农田及其周边的恢复生境是蜘蛛重要的栖息地。本研究采用陷阱法,对河北省张家口市崇礼区871、1360、1635 m 3个海拔农田、自然恢复草地及人工修复林地的蜘蛛群落的物种组成、物种多样性和功能特征进行研究,分析不同恢复生境中蜘蛛群落特征。结果表明: 不同生境蜘蛛的物种多样性指数差异明显,人工修复林地蜘蛛的多度为124.3只,显著高于自然恢复草地(70.1)及农田(38.6)的蜘蛛多度;人工修复林地(16.3)与自然恢复草地(21.4)的物种丰富度没有显著差别,但均显著高于农田(8.9);人工修复林地(2.04)及自然恢复草地(2.05)的Shannon多样性指数差异不显著,且均显著高于农田(1.55)。3种生境的蜘蛛群落组成均具有显著差异;蜘蛛体长与蜘蛛捕猎类型呈正相关,大型蜘蛛倾向于通过捕猎获取食物;自然恢复草地与农田蜘蛛以游猎型为主,而人工修复林地倾向于拥有更多的结网型蜘蛛,高海拔地区的蜘蛛体积通常较小。自然恢复草地与人工修复林地均可以提升蜘蛛群落多样性,在区域生物多样性保护中起重要作用;不同生境蜘蛛群落组成出现了显著分化,即蜘蛛群落总体的功能特征发生改变和保留了部分生境特有种。2种恢复生境蜘蛛多样性指标优于农田生境,且2种恢复生境物种组成存在差异,均具有保护特有种的功能,研究结果对农田及区域尺度蜘蛛生物多样性保护与恢复具有指导意义。  相似文献   

3.
1 Spiders (Araneae) were collected on and near downed woody material (DWM) in a Populus‐dominated forest to determine if spiders utilize wood surfaces, and to ascertain the importance of DWM habitat and wood elevation for spider assemblages. 2 Over 10 000 spiders representing 100 species were collected. Although more spiders were collected on the forest floor, spider diversity was higher in traps located on wood surfaces than on the forest floor, and 11 species were collected more frequently on wood surfaces. 3 Spiders utilized DWM at different stages in their development. Female Pardosa mackenziana (Keyserling) (Lycosidae) carrying egg sacs were caught most often on the surface of DWM, possibly to sun their egg sacs. Additionally, the proportion of immature spiders was higher on the wood surface than on the forest floor. 4 Spiders collected on logs with and without bark were compared to assemblages collected on telephone poles to assess what features of DWM habitat may be important. Web‐building species were seldom collected on telephone poles, suggesting that they depend on the greater habitat complexity provided by DWM. In contrast, hunting spiders did not distinguish between telephone poles and logs. 5 Fewer spiders and a less diverse fauna utilized elevated compared to ground‐level wood. Additionally, Detrended Correspondence Analysis revealed that the spider community from elevated wood was distinguishable from the spider community from ground‐level wood, and from the forest floor spider community.  相似文献   

4.
1. The spillover of exotic predators from managed ecosystems into natural habitats may exacerbate the biodiversity losses caused by land‐use intensification. 2. In the present study, the impacts of the exotic wandering spider Cheiracanthium mildei L. Koch in an oak woodland ecosystem adjacent to an intensively‐managed agricultural system were examined. 3. Abundance and species richness of resident spiders and insects in oak branches were reduced in the presence of C. mildei. Contrary to expectations, C. mildei did not disproportionately affect other wandering spider species, but appeared to impact spiders from all tested functional groups. Numbers of herbivorous and predatory insects were also lower in the presence of C. mildei. 4. Although the apparent effects of this spider extend to multiple trophic levels in oak woodland, its voracity and relatively large size may ultimately strengthen herbivore suppression in the vineyard–oak woodland landscape.  相似文献   

5.
Spiders are important natural enemies of pests in many agroecosystems. Spiders’ diversity and abundance—and therefore their biological control potential—often increases with the presence of non-crop habitats adjacent to the agroecosystem and/or the abundance of such habitats in the landscape. This research aims to determine whether spider communities dwelling on vine plant trunks are richer and more abundant in terraced vineyards than in plain vineyards. We found that spiders’ abundance and species richness were significantly greater during part of the season in the plain than the terraced types of vineyards. The abundance of spiders on the vine plants in the terraced vineyards decreased gradually from the field margins to the centre while no such pattern was observed in the plain vineyards. Subsequent experiments will be needed in order to elucidate the role of the individual mechanisms and parameters that underpin our findings. For example, the air flow (direction and intensity), the presence of the predators, heterogeneity and the presence of shrubs on the slopes of terraces should be studied further. Particularly, because our findings contradict the general assumption that terraced vineyards should host richer spider communities.  相似文献   

6.
Aim Animal communities can be influenced by the composition of the surrounding landscape through immigration. Depending on habitat preferences, however, the effect of the landscape matrix can be positive or negative and can vary with scale. We tested this idea with arable spiders and tried to infer dispersal distances from relationships between local density and landscape composition at different spatial scales. Location Thirty‐eight landscapes around the cities of Göttingen and Giessen, Germany. Methods Spiders were captured with pitfall traps in one field of winter wheat in each landscape. Landscape composition around the fields was characterized at 11 scales from 95 m to 3 km radius by land‐use mapping and subsequent GIS analysis. Correlation tests were performed between landscape composition and local densities or species richness. Results In both study regions, local species richness was enhanced by non‐crop habitats on a landscape scale. The overall densities of wolf spiders (Lycosidae), long‐jawed spiders (Tetragnathidae), crab spiders (Thomisidae), and dwarf sheet spiders (Hahniidae) increased significantly in landscapes with high percentages of non‐crop habitats. Out of the 40 species tested, 19 responded positively to the percentage of non‐crop habitats in the surrounding landscape, and five responded negatively. Depending on the species, the spatial scales with the highest explanatory power ranged from 95 m to 3 km radius around the study fields, potentially reflecting dispersal distances. Main conclusions Arable spider species showed contrasting responses to the landscape context with respect both to the direction and to the spatial scale of the relationship. The variation in landscape requirements among species ensures high spider densities in a wide range of situations, which contributes to ecosystem resilience. However, species richness of arable spiders depends on heterogeneous landscapes with high percentages of non‐crop habitats.  相似文献   

7.
Urbanization and urban landscape characteristics greatly alter plant and animal species richness and abundances in negative and positive directions. Spiders are top predators, often considered to be sensitive to habitat alteration. Studies in urban environments frequently focus on ground-dwelling spiders or on spiders in built structures, leaving aside foliage spiders. Effects of habitat, landscape type and structure and local characteristics on spider species composition, richness and relative abundance were evaluated in urban green patches in a temperate city of South America. We also assess whether Salticidae could be an indicator group for the broader spider community in the urban environment. Spiders were sampled with a G-VAC (aspirator) in urban green patches in Córdoba city, Argentina, in urban, suburban and exurban habitats (18 sites; six per habitat) and local and landscape traits were assessed. Overall, the exurban was richer than the urban habitat, however, at the site level Salticidae richness and abundance (but not the total spider assemblage) were significantly lower in urban sites. Species composition moderately differed between urban and exurban sites. Results indicate that on urban green spaces a low impervious surface cover, a coverage of trees, herbaceous vegetation and a vertical structure of vegetation at least up to 1 m in height contribute to higher richness and abundance of spiders, Salticidae being more sensitive than the overall spider community to local effects. In addition, Salticidae richness can predict 74% of the total spider richness recorded and may be used as spider diversity bio-indicators in this climatic region.  相似文献   

8.
The abundance of wolf spiders (Lycosidae) was measured across woodland–pasture boundaries in the wheat‐belt of New South Wales, Australia, to determine the nature and magnitude of any edge effect. Spiders were collected by spotlighting along sample plots in woodlands located at distances of 5, 20, 35 and 200 m from the edge, and along sample plots in paddocks located at distances of 5 and 20 m from the edge. The wolf spider assemblage changed significantly across the edge, but the difference could be accounted for only by a change between the woodland and the paddock and not by any changes within the woodland at different distances from the edge. Ground cover (wolf spider microhabitat) changed significantly between the paddock and the woodland, but there were no consistent differences in microhabitat with distance from edge within either paddocks or woodlands. There was a significant correlation between an ordination of sites based on spider species abundance and an ordination based on microhabitat variables, suggesting that the wolf spider assemblage was responding to differences in microhabitat. Fine‐scale selection of microhabitat by most wolf spider species was non‐random, with most species preferring locations with grass cover, rather than more open locations. The present study indicates that wolf spiders are mostly unaffected by edge conditions at the woodland–paddock boundary. Accordingly, small and/or linear remnants with high edge‐to‐area ratios may constitute suitable faunal habitat for wolf spiders and perhaps other terrestrial arthropod species, despite the fact that this configuration is unsuitable for many vertebrate species.  相似文献   

9.
Agricultural intensification in terms of decreasing landscape complexity and connectivity has negatively affected biodiversity. Linear landscape elements composed of woody vegetation like hedges may counteract this negative trend by providing habitats and enhancing habitat connectivity for different organisms. Here, we tested the impacts of habitat type (forest edges vs. hedges) and hedges’ isolation (connected vs. isolated hedges) from forests as well as microhabitat conditions (percentage of bare ground and width) on trait-specific occurrence of ground-dwelling arthropods, namely spiders and carabids. Arthropods were grouped by habitat specialisation (forest vs. open-habitat species vs. generalists), hunting strategy (web-building or hunting spiders) and dispersal ability (wing morphology of carabids). Spider and carabid assemblage composition was strongly influenced by habitat type and isolation, but not by microhabitat conditions. Activity density of forest species and brachypterous carabids was higher in forest edges compared to hedges, whereas open-habitat species and macropterous carabids showed reverse patterns, with no effects of isolation. Occurrence of generalist carabids, but not spiders, was higher in hedges compared to forest edges. Habitat type and isolation did not affect spiders with different hunting strategy. Microhabitat conditions were less important for spider and carabid occurrence. Our study concludes that on a landscape scale, type of linear woody habitat is more important for arthropod occurrence than isolation effects and microhabitat conditions, depending on traits. Hedges provide refuges for species specialised to open habitats and species with high dispersal ability, such as macropterous carabids. Forest edges enhance persistence of species specialised to forests and species with low dispersal ability, such as brachypterous carabids.  相似文献   

10.
11.
Animal dispersal depends on multiple factors, such as habitat features and life‐history traits of the species. We studied the propensity for ballooning dispersal in spiders under standardized laboratory conditions. The 1269 tested individuals belonged to 124 species and originated from 16 sites with wide variation in habitat type. Spiders from disturbed habitats ballooned 5.5 times more than spiders from stable habitats. In Meioneta rurestris , for which we had enough data for a single‐species analysis, individuals were most dispersive if they originated from highly disturbed habitats. While the data for the other species were not sufficient for single‐species analyses, a hierarchical model that included the data simultaneously on all species suggested that dispersal propensity generally increases within species with the level of habitat disturbance. Dispersal probability showed a trend to increase with niche width, but the higher commonness of species with wide niches provides an alternative explanation for this pattern. As the prevalence of especially dispersive species was highest in disturbed habitats, variation in dispersal propensity was influenced by both inter‐ and intraspecific factors. We conclude that the positive correlation between niche width and dispersal propensity enables generalist species to utilize highly disturbed habitats, whereas the persistence of specialist species with restricted dispersal ability requires the conservation of stable habitats.  相似文献   

12.
Invasions have often been linked to reduced biodiversity, but the role of non-native species in the decline of native species is ambiguous. In a 2003 survey of four California vineyard regions, exotic spiders (Cheiracanthium spp.) were more dominant in vineyards with lower spider species diversity and reduced spider abundance. There was no evidence for the role of species interactions in the invasion of Cheiracanthium spiders, however, as native spiders from the same feeding guild were most abundant in regions with high Cheiracanthium levels. Comparison with a survey conducted 10 years earlier indicated that the recent invader C. mildei simply represented an addition to the spider community, with no apparent change in proportions of the congener C. inclusum. Invasion success is discussed with respect to agricultural habitat, as results suggest that disturbed conditions in many vineyards may favor Cheiracanthium spp. and native wandering spiders while decreasing overall spider diversity.  相似文献   

13.
Spiders are important generalist predators in natural pest control. However, agricultural fields are highly disturbed and ephemeral habitats, which present a number of challenges to the organisms living there; likewise landscape diversity and heterogeneity are also thought to be important factors in determining spider spatial dynamics. To investigate the interactions between these factors, we present an individual-based simulation model, which integrates life history characteristics of a typical agrobiont linyphiid spider with a dynamic spatially explicit landscape representation. The landscape contains several habitat types of varying quality and varies in time and space. Simulations showed that spatial landscape diversity (number of habitat types available for the spiders) is crucial for the persistence of spiders, but that spatial heterogeneity (spatial arrangement of patches) only had little impact on spider abundance. The necessary landscape diversity could either be provided by a diverse crop rotation or by including refuges in the form of less frequently managed habitats in the landscape. The presence of refuges greatly boosted numbers of spiders in the landscape as a whole. The most important characteristics of refuge were sanctuary from pesticides and extra prey availability, whereas tillage frequency mattered less. The simulations indicated that agrobiont linyphiids combination of high dispersal abilities and high reproductive rate enables it to exploit the transient resources of the different habitats in the agricultural landscape.  相似文献   

14.
Reciprocal transplant experiments were completed to test for selection against the mixing of behavioural phenotypes in a desert spider. Most Agelenopsis aperta populations experience low prey abundances and competition for web‐sites that provide shelter from thermal extremes. These conditions favour aggressiveness towards both prey and conspecifics (an ‘arid‐land behavioural phenotype’). The spider also occupies narrow stretches of riparian habitat bordering spring‐fed streams and rivers. Here it is released from competition for prey and foraging sites, but is subject to predation by birds. A less aggressive/more fearful behaviour is selected for in these riparian habitats (a ‘riparian behavioural phenotype’). Previous work with this spider indicates that there is genetic differentiation between arid‐land and riparian populations. However, the degree to which genetic differentiation is achieved may be limited by gene flow. Reciprocal sets of enclosures were established in: (1) a dry evergreen woodland site (arid‐land phenotype) and (2) a neighbouring riparian site (riparian phenotype) in south‐eastern Arizona. Equal numbers of field collected, early instar A. aperta were introduced into native and transplant enclosures in each habitat. After 6 months of site‐imposed selection, survivorship was determined and growth estimates and behavioural trials completed on spiders remaining in the different enclosures. The same behavioural test was subsequently applied to lab‐reared offspring of the spiders surviving the respective selection regimes. Riparian transplants showed both poor survival and retarded growth in the dry woodland habitat when compared with both arid‐land and riparian natives. Arid‐land transplants that survived, however, grew equally well in riparian habitat as did dry woodland and riparian natives. Behavioural assays conducted on test subjects after selection and on their offspring reared in a controlled laboratory environment indicate that phenotypes that were inappropriate to the respective habitats were selected against in the transplant experiments. The frequency distribution of transplant spider behaviour on a continuum from fearful to aggressive was intermediate between that exhibited by respective native riparian and dry woodland spiders. It is concluded that while arid‐land and riparian behavioural ecotypes do exist, directional gene flow of arid‐land phenotypes into riparian habitat limits population subdivision.  相似文献   

15.
Dispersal is one of the most important precopulatory inbreeding avoidance mechanisms and subject to landscape related selection pressures. In small populations, inbreeding within and between populations may strongly affect population dynamics if it reduces fitness and gene‐flow. While inbreeding avoidance is generally considered to be a key evolutionary driver of dispersal, potential effects of inbreeding on the dispersal process, are poorly known. Here, I document how inbreeding within a population, so by mating among relatives, affects the survivorship and the dispersal behaviour of three congeneric spider Erigone species (Araneae: Linyphiidae) that differ in habitat preference and regional rarity. The three species were chosen as a model because they allow the assessment of both long and short distance dispersal motivation (respectively ballooning and rappelling) under laboratory conditions. Inbreeding reduced both long and short distance dispersal modes in the three congeneric species. Because survival was depressed after inbreeding, with a tendency of reduced survival loss in the rare and highly stenotopic species, energetic constraints are likely to be the underlying mechanism. Inbreeding consequently depresses silk‐related dispersal in three related spiders. This may induce an inbreeding depression vortex with important consequences for range expansion and metapopulation dynamics of aerially dispersing species from highly fragmented landscapes.  相似文献   

16.
Intensive land use can fragment continuous natural areas into smaller patches, which may be too small to support viable populations of native fauna and more susceptible to invasion by alien species. We demonstrate the utility of combining species occurrence models with land-use change models to identify areas where future development may differentially affect wildlife. Occurrence data for native (e.g., gray fox, coyote, bobcat, mountain lion, striped skunk, raccoon) and non-native (e.g., domestic dogs, domestic cats, opossums) mammalian predators were collected from 188 remotely triggered camera locations across an oak woodland and vineyard landscape in northern California. The occurrence data were used in combination with landscape variables extracted using a geographic information system to build explanatory models of predator occurrence. These statistical models were used to derive two surfaces showing relative probability of occurrence for non-native and native predators. Then, a spatially explicit land-use change model was used to examine potential future predator distributions given potential future vineyard expansion. The probability distribution models generated hypothesized low probabilities of occurrence for native predators within large vineyard blocks, but higher probabilities within isolated vineyards and also in oak woodlands. The models suggest the highest probabilities of non-native predator occurrence fell within large blocks of vineyard. Using one possible future vineyard development scenario, the distribution models illustrate areas where probability of native predator occurrence may be reduced and where non-native predators may expand due to vineyard development. This technique could be applied to prioritize acquisition of critical wildlife habitat and maintain habitat connectivity for wildlife populations.  相似文献   

17.
Caves are not closed systems. Trophic dynamics in these habitats are driven by resource availability, and species that move between cave and outdoor environments may play a major role in resource availability. Spiders are among the most abundant invertebrates in caves; however, very few studies have tested factors hypothesized to affect the distribution of spiders among caves, and it is not known whether the trophic features of caves play a role in determining the occurrence, abundance, or breeding success of spiders. We assessed the distribution of the cave‐dwelling orb‐weaver spider Meta menardi in Italy, in a Mediterranean and in a Pre‐alpine area during summer and winter. We analyzed the relationships between spider distribution and multiple cave features, describing both the abiotic and the biotic environment. Using visual encounter surveys, the detection probability of this species was high, indicating that this technique provides reliable information on spider distribution. In Mediterranean caves, spider presence was more likely in cold and wet caves with abundant dipterans. In Pre‐alpine caves, spider presence was more likely in deep caves with abundant dipterans. Dipteran abundance was the variable best explaining spider distribution when pooling all sampled caves. This study shows that adults of M. menardi do not occur randomly among caves, but select caves with specific features. Prey availability and abiotic features are major determinants of habitat suitability for cave spiders. The strong relationship between spider distribution and prey availability suggests that the distribution of these spiders might be an indicator of the resources available in the twilight zones of caves.  相似文献   

18.
Elephant impacts on spider assemblages, and the potential use of spiders as indicators of habitat changes was assessed in central Maputaland, South Africa. Three habitats, namely undisturbed sand forest, elephant disturbed sand forest and mixed woodland, were sampled. To ensure a thorough representation of all spider guilds, spiders were collected by tree beating, sweep netting, active searching, leaf litter sifting and pitfall traps. In total, 2808 individual spiders, representing 36 families, 144 determined genera and 251 species were collected. Spider abundance was highest in the undisturbed sand forest (n = 1129, S = 179), followed by elephant disturbed sand forest (n = 1006, S = 165) and mixed woodland (n = 673, S = 171). Assemblages of the two sand forests were more similar than to the mixed woodland assemblage. Active hunting species were indicators of the more open vegetation of elephant disturbed sand forest (six active hunters, no web‐builders) and mixed woodland (ten active hunters, one web‐builder), whereas web‐builders are indicators of the dense, complex vegetation structure of undisturbed sand forest (six web‐builders, three active hunters). Elephant‐induced changes to the vegetation structure in this high diversity, high endemism region result in changes in the composition of spider assemblages, and may need to be mitigated by management intervention.  相似文献   

19.
Spiders contribute considerably to diversity in agroecosystems and are important components of natural pest control. Farming system and adjacent habitats may influence spider diversity. In this study, diversity of the spider families Lycosidae and Linyphiidae was studied after spring sowing until the time when a common pest (Rhopalosiphum padi) colonizes cereal fields. The spiders were collected with pitfall traps at eight organically or conventionally managed farms around Uppsala, Sweden, in three different habitats at each site: field margin, crop field and the edge between the two. The effects of farming system and habitat type on diversity of lycosids and linyphiids were considered using three different measures (activity density, species richness and composition). The most dominant species of each spider family, Pardosa agrestis (Lycosidae) and Oedothorax apicatus (Linyphiidae), had higher activity density at organic sites, and farming systems also contained different species compositions of both lycosid and linyphiid spiders. Also, linyphiid species richness was higher on conventional sites and linyphiid species composition was influenced by habitat type, in contrast with lycosids. Activity density and species richness of lycosid spiders were, on the other hand, more associated with field margins than linyphiid spiders.  相似文献   

20.
This study tested the hypothesis that habitat structure dictates the distribution and community composition of arboreal arthropods. A diverse arthropod assemblage of Douglas-fir canopies, which included Araneae, Psocoptera, Collembola and Homoptera, was chosen as a model system. Habitat structural diversity, defined as needle density and branching complexity of Douglas-fir branches, was manipulated in a four-month experiment by needle removal, thinning and tying of branches. Abundance of canopy spiders declined significantly following needle density reduction and branch thinning, branch tying significantly increased spider abundance. Distinct habitat utilization patterns were found among individual spider guilds. Orb weavers (Araneidae) dominated spider assemblages in structurally simple habitats, whereas tied branches were colonized primarily by sheet-web weavers (Linyphiidae) and nocturnal hunting spiders (Anyphaenidae and Clubionidae). Spider species richness and average body size of several spider species increased in structurally more complex habitats. Arboreal spiders appeared to be limited by strong bottom-up effects in the form of habitat quality and, to a lesser degree, prey availability. Habitat manipulations did not affect densities or biomass of flying arthropod colonists in the branch vicinity. Needle removal and branch thinning led to a significant decline in the abundance of Psocoptera and Collembola. Tying of branches resulted in an eight-fold increase in Collembola numbers, organisms most sensitive to habitat alterations. Canopy habitat structure modified vertical dispersal of Collembola from forest litter, which may have significant implications for arboreal consumers. Our results lend strong support to the importance of habitat structural diversity in explaining general patterns of arthropod abundance and diversity on plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号