首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Electrical properties of isolated frog primary afferent neurons were examined by suction pipette technique, which combines internal perfusion with current or voltage clamp using a switching circuit with a single electrode. When K+ in the external and internal solutions was totally replaced with Cs+, extremely prolonged Ca spikes, lasting for 5 to 10 sec, and Na spikes, having a short plateau phase of 10 to 15 msec, were observed in Na+-free and Ca2+-free solutions, respectively. Under voltage clamp, Ca2+ current (I Ca) appeared at around –30 mV and maximum peak current was elicited at about 0 mV. With increasing test pulses to the positive side,I Ca became smaller and flattened but did not reverse. Increases of [Ca] o induced a hyperbolic increase ofI Ca and also shifted itsI-V curve along the voltage axis to the more positive direction. Internal perfusion of F blockedI Ca time-dependently. The Ca channel was permeable to foreign divalent cations in the sequence ofI Ca>I Ba>I SrI Mn>I Zn. Organic Ca-blockers equally depressed the divalent cation currents dose- and time-dependently without shifting theI-V relationships, while inorganic blockers suppressed these currents dose-dependently and the inhibition appeared much stronger in the order ofI Ba=I Sr>I Ca>I Mn=I Zn.  相似文献   

2.
Shen JJ  Liu CJ  Li A  Hu XW  Lu YL  Chen L  Zhou Y  Liu LJ 《生理学报》2007,59(6):745-752
本文在培养的大鼠三叉神经节(trigeminal ganglion,TG)神经元上采用全细胞膜片钳技术,探讨大麻素对大鼠TG神经元ATP激活电流(ATP-activated currents,IATP)的影响.结果显示(1)胞外给予ATP,大部分受检细胞(67/75,89.33%)可记录到一个内向电流,且具有剂量依赖性.该电流可被P2X嘌呤受体特异性拮抗剂PPADS所阻断.(2)预加WIN55212-2[大麻素受体1(cannabinoid receptor 1,CB1受体)激动剂]可对IATP产生抑制作用,此作用呈剂量依赖性,并可被CB1受体特异性拮抗剂AM281阻断.预加不同浓度的WIN55212-2(1x10-13、1x10-12、1x10-11、1x10-10、1x10-9和1x10-8mol/L)对IATP(1x10-4mol/L ATP)的抑制作用分别为(8.14±3.14)%、(20.11±2.72)%、(46.62±3.51)%、(72.16±5.64)%、(80.21±2.80)%和(80.59±3.55)%.(3)预加WIN55212-2后IATP的浓度-反应曲线明显下移;最大反应浓度时的IATP幅值减小了(58.02±4.21)%,而阈值基本不变;预加WIN55212.2前后曲线的EC50值非常接近(1.15x10-4mol/L vs 1.27x10-4 mol/L).(4)预加forskolin[腺苷酸环化酶(adenylyl cyclase,AC)激动剂]或8-Br-cAMP可以逆转WIN55212-2对IATP的抑制作用.以上结果表明,大麻素可能作用于CB1受体,通过抑制AC-cAMP-PKA途径发挥对IATP的抑制作用.  相似文献   

3.
Steady-state characteristics of proton-activated permeability of the somatic membrane of rat sensory neurons were studied. Transmembrane ionic currents arising in response to application of solutions with low pH were measured during intracellular perfusion and simultaneous voltage clamping. A rapid change in proton concentration in the external medium was produced by a modified rapid application method. Steady-state desensitization of proton-induced permeability was found to develop in the region of weakly alkaline values (pKa 7.15). The mechanism of desensitization is highly cooperative: Hill's parameter for dose-effect dependences was close to 7. Activation also is cooperative, but its Hill's parameters is about 2. Calcium and magnesium cations compete with protons, changing pKa of dose-effect relationships for desensitization and activation, but they have only a weak effect on the value of Hill's parameter.  相似文献   

4.
Voltage dependence of the deactivation kinetics of calcium inward currents was investigated in the somatic membrane of murine spinal ganglia neurons. It was found that deactivation of high threshold calcium current has a slower component (=0.80–0.85 msec at a repolarizing potential of –80 mV) as well as the principal transient exponential component (130 sec at the same potential repolarizing level). A dissimilar relationship exists between amplitudes of the transient and slower exponential components, describing deactivation of high threshold calcium current and degree of activation of the depolarizing shift in membrane potential; the former dependence is expressed by a sigmoid and the latter by a V-shaped curve. The slower component of deactivation of high threshold current was inhibited substantially by perfusing the cell with a Tris-PO4-containing solution. Low-threshold calcium tail current undergoes slower deactivation (=1.1–1.2 msec) at a repolarizing potential of –160 mV. A relationship between the time constant of low threshold current deactivation and the type of penetrating cation used was observed. A kinetic model of calcium current deactivation is suggested, taking account of the three different types of calcium channels, (one low and two high threshold) present in the somatic membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 185–193, March–April, 1988.  相似文献   

5.
Transmembrane ion currents were studied in the somatic membrane of freshly isolated neurons from the spinal ganglia of early postnatal (younger than 15-day-old) rats. According to their dissimilar voltage dependence and different sensitivity to external application of tetraethylammonium (TEA) and 4-aminopyridine (4-AP), three types of outward potassium currents were identified. Fast-inactivating K+ current was activated at the most negative values of the membrane potential and showed the highest sensitivity to external application of 4-AP. The threshold for activation of slow-inactivating K+ current was within a −40 ... −30 mV range. Non-inactivating delay-rectified current showed the highest sensitivity to TEA. All three types of K+ currents could be found in all studied neurons of animals of three age groups: 1, 5 to 6, and 14 to 15 postnatal days. The mean density of fast-inactivating K+ current significantly increased during the first two weeks of postnatal ontogenesis. Within the studied period, the mode of a normal (Gaussian) distribution of fast K+ current shifted toward higher current density values. The mean density of slow-inactivating K+ current also increased with the age. Yet, the mean density of non-inactivating delay-rectified K+ current significantly dropped during the first five days of the postnatal development and remained stable during the following time interval.  相似文献   

6.
The effect of the alkaloid lappaconitine on passive ion transport through the somatic membrane of identified neurons of the snailHelix pomatia was studied under voltage clamp conditions. In a concentration of 4 mM lappaconitine has a reversible blocking action on the calcium channels of the excitable membrane. To study the effect of the alkaloid on inward sodium currents a solution in which calcium ions were replaced by the equivalent number of magnesium ions was used. Lappaconitine has no appreciable effect on the inward sodium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 469–474, September–October, 1979.  相似文献   

7.
The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.  相似文献   

8.
The distribution of different types of ionic channels carrying inward currents was investigated in the somatic membranes of spinal ganglion neurons in rats belonging to three different age groups: at 5–9 days, 45 days, and 3 months. A decrease was found in the number of neuronal membranes operating all four types of inward current channels simultaneously: "fast" (tetrodotoxin-sensitive), "slow" (tetrodotoxin-resistant) sodium currents and low- and high-threshold calcium currents. There were 14.5% of such neurons in the first age group, 5% in the second, and 1% on the third. It was found that this change was related to the disappearance of "slow" (tetrodotoxin-resistant) sodium and high-threshold calcium channels from the membrane. The number of neuronal somatic membranes with only two types of inward current channels ("fast" sodium and high-threshold calcium channels) increased proportionately.A. A. Bogomolets Institute of Technology, Academy of Sciences of the Ukrainian SSR, Kiev Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 813–820, November–December, 1986.  相似文献   

9.
Single transient K channels in mammalian sensory neurons.   总被引:8,自引:0,他引:8       下载免费PDF全文
A single-channel recording of the transient outward current (A-current) was obtained from dorsal root ganglion cells in culture using patch-clamp techniques. Depolarization of the membrane patch elicited pulse like current of a uniform amplitude in an outward direction, of which the unitary conductance was 20 pS. Alteration of extracellular ionic compositions indicated that the charge carriers were K ions. A systematic study was made on the voltage-dependence of the ensemble average current; (a) the activation started at a potential around -60 mV; (b) the time course of the activation was relatively rapid; (c) the channel was completely inactivated at a potential positive to -40 mV. Two time constants (tau f = 100 ms and tau s = 4,000 ms) were detected in the decay of the current indicating that the channels had two different states of inactivation. A convulsant, 4-aminopyridine (4-AP), acted on the channel only from the intracellular side of the membrane. 4-AP (5 mM) reduced not only mean open time (by 50%) but also the single-channel conductance (by 20%). The properties of the channel were independent of Ca ions in the intracellular space.  相似文献   

10.
Two new types of calcium channels were discovered during research in ionic currents in the somatic membrane ofHelix pomatia neurons, using an intracellular perfusion technique. Apart from the principal calcium current described in the literature with a holding potential of about –110 mV, an additional calcium current was observed activated at depolarizations of –40 to –80 mV and was not reduced when the cell was perfused with solutions containing fluoride anions. The kinetics of this current were well described in the context of the Hodgkin and Huxley model with a time constant of activation of 6–8 msec and of inactivation of 300–600 msec. It increased in amplitude as the Ca++ rose in the cellular environment but was reduced by extracellular addition of the Ca++ antagonists Co++, Ni++, and Cd++, and the organic blockers nifedipine and verapamil. The association constants of these substances with corresponding channels determined from the maximum of the current-voltage relationship were 2 (Ca++), 3 (Co++), 0.06 (nifedipine), and 0.2 mM (verapamil). The properties detected in this component of calcium conductance are compared with those of calcium channels in other excitatory formations and its possible functional role is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 627–633, September–October, 1985.  相似文献   

11.
Calcium signals evoked at depolarization of the cell membrane and their modifications induced by blocking of accumulation of these ions in the mitochondria and blocking of mitochondrial Na+/Ca2+ exchange were studied in dorsal root ganglion neurons of mice with the use of fluorescent measurements of shifts in the intracellular Ca2+ level. Mitochondria aredemonstrated to be actively involved in formation of these signals by rapid peak absorption of Ca ions from and their subsequent return to the cytosol.  相似文献   

12.
The molecular mechanisms controlling fluid secretion within the oviduct have yet to be determined. As in other epithelia, both secretory and absorptive pathways are likely to work in tandem to drive appropriate ionic movement to support fluid movement across the oviduct epithelium. This study explored the role of potassium channels in basolateral extracellular ATP (ATP(e))-stimulated ion transport in bovine oviduct epithelium using the Ussing chamber short-circuit current (I(SC)) technique. Basal I(SC) in bovine oviduct epithelium comprises both chloride secretion and sodium absorption and was inhibited by treatment with basolateral K(+) channel inhibitors tetrapentlyammonium chloride (TPeA) or BaCl(2). Similarly, ATP-stimulated chloride secretion was significantly attenuated by pretreatment with BaCl(2,) tetraethylammonium (TEA), tolbutamide, and TPeA. Basolateral K(+) current, isolated using nystatin-perforation technique, was rapidly activated by ATP(e), and pretreatment of monolayers with thapsigargin or TPeA abolished this ATP-stimulated K(+) current. To further investigate the type of K(+) channel involved in the ATP response in the bovine oviduct, a number of specific Ca(2+)-activated K(+) channel inhibitors were tested on the ATP-induced ΔI(SC) in intact monolayers. Charbydotoxin, (high conductance and intermediate conductance inhibitor), or paxilline, (high conductance inhibitor) did not significantly alter the ATP(e) response. However, pretreatment with the small conductance inhibitor apamin resulted in a 60% reduction in the response to ATP(e). The presence of small conductance family member KCNN3 was confirmed by RT-PCR and immunohistochemistry. Measurements of intracellular calcium using Fura-2 spectrofluorescence imaging revealed the ability of ATP(e) to increase intracellular calcium in a phospholipase C-inositol 1,4,5-trisphosphate pathway-sensitive manner. In conclusion, these results provide strong evidence that purinergic activation of a calcium-dependent, apamin-sensitive potassium conductance is essential to promote chloride secretion and thus fluid formation in the oviduct.  相似文献   

13.
Effects of hyperforin, an acylphloroglucinol derivative isolated from antidepressive medicinal herb Hypericum perforatum (St. John's Wort), on voltage- and ligand-gated ionic conductances were investigated. Whole-cell patch clamp and concentration clamp techniques on acutely isolated hippocampal pyramidal neurons and on cerebellar Purkinje neurons of rat were used. At concentrations between 3 to 100 microM hyperforin induced a dose and time dependent inward current which completely stabilized within a few seconds. Although 1 microM hyperforin inhibited virtually all investigated conductances (GABA > or = I(Ca(N)) > I(Na) > I(Ca(P) > or = AMPA > or = I(K(A)) > NMDA > I(K(DR))), its effects on several of them could not be reversed by repeated washings. Dose response studies revealed that although AMPA induced current is inhibited by hyperforin in a competitive manner, these responses are not completely blocked by very high concentration of the agent. On the contrary, however, NMDA receptor-activated ionic conductance could be completely and uncompetitively inhibited by the agent. Taken together these observation not only reconfirm that hyperforin is a major neuroactive component of hypericum extracts but also demonstrate that this structurally unique and naturally abundant molecule is a potent modulation of mechanism involved in the control of neuronal ionic conductances. Various observed effects of hyperforin do not, however, seem to be mediated by one single molecular mechanism of action of the agent.  相似文献   

14.
Isolated Ca currents in cultured dorsal root ganglion (DRG) cells were studied using the patch clamp technique. The currents persisted in the presence of 30 microM tetrodotoxin (TTX) or when external Na was replaced by choline. They were fully blocked by millimolar additions of Cd2+ and Ni2+ to the bath. Two components of an inward-going Ca current were observed. In 5 mM external Ca, a current of small amplitude, turned on already during steps changes to -60 mV membrane potential, leveled off at -30 mV to a value of approximately 0.2 nA. A second, larger current component, which resembled the previously described Ca current in other cells, appeared at more positive voltages (-20 to -10 mV) and had a maximum approximately 0 mV. The current component activated at the more negative membrane potentials showed the stronger dependence on external Ca. The presence of a time- and a voltage-dependent activation was indicated by the current's sigmoidal rise, which became faster with increased depolarization. Its tail currents were generally slower than those associated with the Ca currents of larger amplitude. From -60 mV holding potential, the maximum obtainable amplitude of the low depolarization-activated current was only one-tenth of that achieved from a holding potential of -90 mV. Voltage-dependent inactivation of this current component was fast compared with that of the other component. The properties of this low voltage-activated and fully inactivating Ca current suggest it is the same as the inward current that has been postulated in several central neurons (Llinas, R., and Y. Yarom, 1981, J. Physiol. (Lond.), 315:569-584), which produce depolarizing potential waves and burst-firing only when membrane hyperpolarization precedes.  相似文献   

15.
16.
The decline of calcium inward currents evoked by a long-lasting membrane depolarization was studied on isolated snail neurons internally perfused with a K+-free solution. Two exponential components superimposed on a steady inward current could be distinguished, a slow decline with a time constant of several hundreds of milliseconds, observed at all the testing potentials used, and a fast one with a time constant of several dozens of milliseconds, which appeared at depolarizations to about -10 mV and above. When the calcium current was blocked by extracellular Cd2+ or verapamil, an outward current could be recorded at the same depolarizations. Subtraction of the latter current from the total current, recorded prior to the blockage, largely reduced the fast component of the decline of the total current. An increase in pHi from 7.3 to 8.1 led to the elimination of both the outward current and the fast component of the calcium current decline. The slow component remained practically unchanged, with its rate depending upon the current amplitude. It was slowed following intracellular administration of EDTA, and after equimolar substitution of Ba2+ for Ca2+. It is concluded that the fast component of the calcium inward current decline is mainly due to the superposition of the outward current produced by low selective channels. Only the slow component represents an actual decline of the inward current through calcium channels; it is due to ion accumulation at the inner surface of the cell membrane.  相似文献   

17.
Acetylcholine-induced membrane conductance was investigated in superior cervical ganglion neurons using a patch-clamp technique. It was found that hyperpolarization and depolarization produce an increase and a reduction in acetylcholine (ACh) conductance. This reduction was unconnected with either reversal of the current induced by iontophoretic ACh application or the presence of Ca ions in the external solution. The time constant of relaxation (r) of this current, produced by a jump in membrane potential, was found to increase e-fold when the membrane was hyperpolarized by 70 mV, matching the voltage dependence of ACh conductance. This led to the hypothesis that voltage-dependent ACh-induced conductance is entirely determined by the voltage dependence of nicotinic receptor channel gating kinetics.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 167–171, March–April, 1988.  相似文献   

18.
Electrically operated sodium channels in the somatic membrane of isolated neurons from the rat superior cervical ganglion were investigated using an intracellular dialysis technique and voltage clamping. It was found that sodium currents can be conveyed along two independent systems of sodium channels in these neurons. A mathematical analysis was made of voltage-dependent tetrodotoxin-sensitive fast sodium currents within the framework of the Hodgkin-Huxley model and their kinetic properties were compared with those described in other subjects. It was also shown that the tetrodotoxin-sensitive sodium channels in the somatic membrane of sympathetic neurons have a high affinity for sodium ions. The kinetic and voltage-dependent characteristics of slow tetrodotoxin-sensitive inward sodium current are described. It is also noted that this component of the sodium current was observed in only a limited number of neurons (not more than 2%).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 108–117, January–February, 1986.  相似文献   

19.
20.
Currents activated by gamma-aminobutyric acid (GABA) were recorded in single Purkinje cells isolated from the rat cerebellum and trigeminal ganglia. All neurons tested were GABA-sensitive. Reversal potential of GABA-activated current matched equilibrium potential for chloride ions as determined by Nernst's equation. The dose-response curve was described by Langmuir's isotherm with a dissociation constant (Kd) of 1.4·10–4 M. Nembutal did not just increase the amplitude of GABA-activated current but also activated matching ionic conductance in the absence of GABA. Ionic currents activated by GABA were reversibly blocked by bicuculline methiodide and isocoryne.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 645–652, September–October, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号