首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为明确两种葡萄孢属真菌对不同百合品种叶片和花瓣的侵染能力,采用离体叶片接种法测定灰葡萄孢Botrytis cinerea和椭圆葡萄孢Botrytis elliptica对4个百合品种叶片和花瓣的侵染时间和病斑扩展速度。结果表明,供试百合花瓣接种灰葡萄孢病斑出现时间明显早于叶片,而不同品种花瓣接种椭圆葡萄孢病斑出现时间差异显著。此外,百合品种‘木门’叶片接种椭圆葡萄孢96 h后仍没有病斑出现,而花瓣接种后48 h病斑出现,说明‘木门’叶片对椭圆葡萄孢抗性较强,而花瓣较易感病。  相似文献   

2.
Tang D  Simonich MT  Innes RW 《Plant physiology》2007,144(2):1093-1103
We identified an Arabidopsis (Arabidopsis thaliana) mutant, sma4 (symptoms to multiple avr genotypes4), that displays severe disease symptoms when inoculated with avirulent strains of Pseudomonas syringae pv tomato, although bacterial growth is only moderately enhanced compared to wild-type plants. The sma4 mutant showed a normal susceptible phenotype to the biotrophic fungal pathogen Erysiphe cichoracearum. Significantly, the sma4 mutant was highly resistant to a necrotrophic fungal pathogen, Botrytis cinerea. Germination of B. cinerea spores on sma4 mutant leaves was inhibited, and penetration by those that did germinate was rare. The sma4 mutant also showed several pleiotropic phenotypes, including increased sensitivity to lower humidity and salt stress. Isolation of SMA4 by positional cloning revealed that it encodes LACS2, a member of the long-chain acyl-CoA synthetases. LACS2 has previously been shown to be involved in cutin biosynthesis. We therefore tested three additional cutin-defective mutants for resistance to B. cinerea: att1 (for aberrant induction of type three genes), bodyguard, and lacerata. All three displayed an enhanced resistance to B. cinerea. Our results indicate that plant cutin or cuticle structure may play a crucial role in tolerance to biotic and abiotic stress and in the pathogenesis of B. cinerea.  相似文献   

3.
4.
5.
Salicylic acid (SA) is an important regulator of plant defense responses, and a variety of Arabidopsis mutants impaired in resistance against bacterial and fungal pathogens show defects in SA accumulation, perception, or signal transduction. Nevertheless, the role of SA-dependent defense responses against necrotrophic fungi is currently unclear. We determined the susceptibility of a set of previously identified Arabidopsis mutants impaired in defense responses to the necrotrophic fungal pathogen Botrytis cinerea. The rate of development of B. cinerea disease symptoms on primary infected leaves was affected by responses mediated by the genes EIN2, JAR1, EDS4, PAD2, and PAD3, but was largely independent of EDS5, SID2/ICS1, and PAD4. Furthermore, plants expressing a nahG transgene or treated with a phenylalanine ammonia lyase (PAL) inhibitor showed enhanced symptoms, suggesting that SA synthesized via PAL, and not via isochorismate synthase (ICS), mediates lesion development. In addition, the degree of lesion development did not correlate with defensin or PR1 expression, although it was partially dependent upon camalexin accumulation. Although npr1 mutant leaves were normally susceptible to B. cinerea infection, a double ein2 npr1 mutant was significantly more susceptible than ein2 plants, and exogenous application of SA decreased B. cinerea lesion size through an NPR1-dependent mechanism that could be mimicked by the cpr1 mutation. These data indicate that local resistance to B. cinerea requires ethylene-, jasmonate-, and SA-mediated signaling, that the SA affecting this resistance does not require ICS1 and is likely synthesized via PAL, and that camalexin limits lesion development.  相似文献   

6.
In Arabidopsis, resistance to the necrotrophic fungus Botrytis cinerea is conferred by ethylene via poorly understood mechanisms. Metabolomic approaches compared the responses of the wild‐type, the ethylene‐insensitive mutant etr1‐1, which showed increased susceptibility, and the constitutively active ethylene mutants ctr1‐1 and eto2 both exhibited decreased susceptibility to B. cinerea. Fourier transform–infrared (FT‐IR) spectroscopy demonstrated reproducible biochemical differences between treatments and genotypes. To identify discriminatory mass‐to‐charge ratios (m/z) associated with resistance, discriminant function analysis was employed on spectra derived from direct injection electrospray ionisation‐mass spectrometry on the derived principal components of these data. Ethylene‐modulated m/z were mapped onto Arabidopsis biochemical pathways and many were associated with hydroxycinnamate and monolignol biosynthesis, both linked to cell wall modification. A high‐resolution linear triple quadrupole‐Orbitrap hybrid system confirmed the identity of key metabolites in these pathways. The contribution of these pathways to defence against B. cinerea was validated through the use of multiple Arabidopsis mutants. The FT‐IR microspectroscopy indicated that spatial accumulation of hydroxycinnamates and monolignols at the cell wall to confine disease was linked ot ethylene. These data demonstrate the power of metabolomic approaches in elucidating novel biological phenomena, especially when coupled to validation steps exploiting relevant mutant genotypes.  相似文献   

7.
We functionally analysed two Nep1-like protein (NLP) genes from Botrytis elliptica (a specialized pathogen of lily), encoding proteins homologous to the necrosis and ethylene-inducing protein (NEP1) from Fusarium oxysporum. Single gene replacement mutants were made for BeNEP1 and BeNEP2 , providing the first example of transformation and successful targeted mutagenesis in this fungus. The virulence of both mutants on lily leaves was not affected. BeNEP1 and BeNEP2 were individually expressed in the yeast Pichia pastoris , and the necrosis-inducing activity was tested by infiltration of both proteins into leaves of several monocots and eudicots. Necrotic symptoms developed on the eudicots tobacco, Nicotiana benthamiana and Arabidopsis thaliana , and cell death was induced in tomato cell suspensions. No necrotic symptoms developed on leaves of the monocots rice, maize and lily. These results support the hypothesis that the necrosis-inducing activity of NLPs is limited to eudicots. We conclude that NLPs are not essential virulence factors and they do not function as host-selective toxins for B. elliptica .  相似文献   

8.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

9.
10.
Physical injury inflicted on living tissue makes it vulnerable to invasion by pathogens. Wounding of Arabidopsis thaliana leaves, however, does not conform to this concept and leads to immunity to Botrytis cinerea , the causal agent of grey mould. In wounded leaves, hyphal growth was strongly inhibited compared to unwounded controls. Wound-induced resistance was not associated with salicylic acid-, jasmonic acid- or ethylene-dependent defence responses. The phytoalexin camalexin was found to be involved in this defence response as camalexin-deficient mutants were not protected after wounding and the B. cinerea strains used here were sensitive to this compound. Wounding alone did not lead to camalexin production but primed its accumulation after inoculation with B. cinerea , further supporting the role of camalexin in wound-induced resistance. In parallel with increased camalexin production, genes involved in the biosynthesis of camalexin were induced faster in wounded and infected plants in comparison with unwounded and infected plants. Glutathione was also found to be required for resistance, as mutants deficient in γ-glutamylcysteine synthetase showed susceptibility to B. cinerea after wounding, indicating that wild-type basal levels of glutathione are required for the wound-induced resistance. Furthermore, expression of the gene encoding glutathione- S -transferase 1 was primed by wounding in leaves inoculated with B. cinerea . In addition, the priming of MAP kinase activity was observed after inoculation of wounded leaves with B . cinerea compared to unwounded inoculated controls. Our results demonstrate how abiotic stress can induce immunity to virulent strains of B. cinerea , a process that involves camalexin and glutathione.  相似文献   

11.
The structure-activity relationship was investigated to evaluate the antifungal activities of tuliposides and tulipalins against tulip pathogenic fungi. 6-Tuliposide B was effectively synthesized via the asymmetric Baylis-Hillman reaction. Tuliposides and tulipalins showed antifungal activities against most of the strains tested at high concentrations (2.5 mM), while Botrytis tulipae was resistant to tuliposides. Tulipalin formation was involved in the antifungal activity, tulipalin A showed higher inhibitory activity than 6-tuliposide B and tulipalin B. Both the tuliposides and tulipalins showed pigment-inducing activity against Gibberella zeae and inhibitory activity against Fusarium oxysporum f. sp tulipae. These activities were induced at a much lower concentration (0.05 mM) than the antifungal MIC values.  相似文献   

12.
The reduction of phytochemicals applied to grapevine relies on the development of alternative strategies involving activation of the plant's own defense system. The aim of this work was to study the signaling of defense responses to pathogens in Vitis vinifera. We identified in V. vinifera cv. Chardonnay two putative regulatory elements, VvNHL1 and VvEDS1, with similarity to Arabidopsis defense regulators NDR1 and EDS1. Expression studies of these putative signaling genes together with other known grape defense genes show that they are differentially regulated by salicylic acid and jasmonate-ethylene treatments, as well as by inoculation with different types of pathogens. The expression of VvEDS1 was stimulated by salicylic acid treatment, Botrytis cinerea and Plasmopara viticola inoculation, whereas VvNHL1 was repressed by B. cinerea. VvNHL1 overexpression introduced in Arabidopsis ndr1 mutant did not complement the mutation in terms of sensitivity to avirulent Pseudomonas syringae pv. tomato. Moreover, we observed a weakened resistance to B. cinerea of ndr1 mutants overexpressing VvNHL1, which may be related to cell death enhancement. Together, our results identify two new pathogen-responsive regulatory elements in Vitis vinifera, with potential roles in pathogen defense.  相似文献   

13.
14.
15.
【目的】从农杆菌介导获得的灰葡萄孢RoseBC-3的突变体库中筛选侵染垫缺失突变体菌株,并明确其相关生物学特性。【方法】将菌株接种于洋葱表皮,利用棉兰染色观察侵染垫形成情况,筛选得到一个侵染垫缺失突变体(AT19)。采用形态学方法、离体叶片接种法、钌红染色法、小麦种子幼芽生长抑制法分别对该菌株的菌落培养性状、侵染垫产生情况、致病力、产果胶酶能力以及产植物毒性代谢产物能力进行测定。【结果】筛选灰葡萄孢突变体168株,根据侵染垫形成可分为三类:快速形成侵染垫型(158株)、缓慢形成侵染垫型(9株)和侵染垫形成缺陷型(1株,AT19)。AT19在接种洋葱120 h后依然无法形成成熟侵染垫。该菌株生长较为缓慢,菌落扩展均匀,可以产生分生孢子,对烟草、草莓、蚕豆和豌豆叶片均不能致病,可以产生果胶酶和植物代谢毒性物质。【结论】突变体菌株AT19可以产生果胶酶和植物代谢毒性物质,其致病力缺失与侵染垫产生缺陷相关。研究结果为了解灰葡萄孢侵染垫形成分子机制提供基础材料。  相似文献   

16.
Inoculation of wild-type Arabidopsis plants with the fungus Alternaria brassicicola results in systemic induction of genes encoding a plant defensin (PDF1.2), a basic chitinase (PR-3), and an acidic hevein-like protein (PR-4). Pathogen-induced induction of these three genes is almost completely abolished in the ethylene-insensitive Arabidopsis mutant ein2-1. This indicates that a functional ethylene signal transduction component (EIN2) is required in this response. The ein2-1 mutants were found to be markedly more susceptible than wild-type plants to infection by two different strains of the gray mold fungus Botrytis cinerea. In contrast, no increased fungal colonization of ein2-1 mutants was observed after challenge with avirulent strains of either Peronospora parasitica or A. brassicicola. Our data support the conclusion that ethylene-controlled responses play a role in resistance of Arabidopsis to some but not all types of pathogens.  相似文献   

17.
18.
Isolate 18191, obtained from mature strawberry fruit and determined as Paenibacillus polymyxa has shown an antagonistic potential against Botrytis cinerea , the causal agent of grey mould in strawberries. Germ tube growth of conidia of B. cinerea was strongly inhibited by the culture suspension of the antagonist in aqueous strawberry fruit pulp suspension (1%) but germination rate of conidia was not affected. The application of the culture suspension and the washed cells on detached strawberry leaf discs reduced conidiophore density of B. cinerea by 67 and 84%, respectively. The treatment of detached leaf discs with culture suspensions of different cell densities (1 × 106, 1 × 107, 1 × 108) showed that the lowest density already reduced incidence of B. cinerea by 68% after 8 days incubation period. Investigating the influence of the temperature on the effectiveness of P. polymyxa it was observed that the antagonist was highly effective already at 10°C and reduced incidence and conidiophore density of B. cinerea by 53 and 58%, respectively. In 3-year field trials the effectiveness of P. polymyxa was in a range of 24–36% as compared to the water control.  相似文献   

19.
Yeast exo-β-1,3-glucanase (EXG1) was evaluated as an inhibitory agent of Colletotrichum lupini and Botrytis cinerea. Extracts obtained from yeast transformed with the exg1 gene, expressing high levels of EXG1 activity, or control untransformed yeast cultures that lacked EXG1 activity, were added to different starting concentrations of C. lupini fungal spore suspensions (2.5 × 103 to 80 × 103 spores per flask), and mycelial dry weight was measured after 5 days. Inhibition of C. lupini mycelial growth by EXG1 compared with control extracts ranged from 41 to 20% when added to starting fungal spore concentrations of 2.5 × 103 to 80 × 103, respectively. EXG1 activity in the extracts from the transformed yeast remained high over the 5-day incubation period. Addition of the EXG1 extract after C. lupini spore germination resulted in lower inhibition, indicating that the EXG1 targets the β-glucan in the cell walls of the fungal spores at an early stage of germination. Furthermore, the yeast EXG1 extracts were also shown to inhibit Botrytis cinerea spore germination and growth. Thus, the use of the yeast exg1 gene for protection of crops, such as lupin and pear in transgenic strategies against C. lupini and B. cinerea , respectively, could be considered.  相似文献   

20.
One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号