首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land use and land cover change has a marked affect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic variables. To assess wetland condition, we have developed a Florida wetland condition index (FWCI) composed of indicators of community structure in the diatom, macrophyte, and macroinvertebrate assemblages for 216 wetlands (n = 74 depressional marsh, n = 118 depressional forested, n = 24 flowing water forested wetlands). Depressional wetlands located along a human disturbance gradient throughout Florida were sampled for each assemblage. Forested flowing water wetlands were sampled for macrophytes only. The landscape development intensity index (LDI) was used to quantify the human disturbance gradient. In general, human disturbance in adjacent areas had the greatest impact on depressional herbaceous wetlands, followed by depressional forested wetlands. Forested flowing water wetlands (i.e., forested strands and floodplain wetlands) were less affected by local conditions, with most of their changes in wetland condition correlated with alterations at the larger watershed scale. Strong correlations between the FWCIs and LDI index scores suggest that changes in community structure can be detected along a gradient of human land use activities adjacent to wetland ecosystems.  相似文献   

2.
Vegetation indices are widely employed to evaluate wetland ecological condition, and are expected to provide sensitive and specific detection of environmental change. Most studies evaluate the performance of condition assessment metrics in the context of the data used to calibrate them. Here we examined the temporal stability of the Florida Wetland Condition Index (FWCI) for vegetation of depressional forested wetlands by resampling sites in 2008 that were previously sampled to develop the FWCI in 2001. Our objective was to determine if FWCI, a composite of six vegetation-based metrics, provides a robust measure of condition given inter-annual variation in environmental conditions (i.e., rainfall) between sampling periods. To that end, we sampled 22 geographically isolated wetlands in north Florida that spanned a wide land use/land cover intensity gradient. Our results suggested the FWCI is robust. We observed no significant paired difference in FWCI across or within land use categories, and the relationship between FWCI in 2001 and 2008 was strong (r2 = 0.88, p < 0.001). This was despite surprisingly high composition change. Mean Jaccard community similarity within sites between years was 0.30, suggesting that most of the herbaceous taxa were replaced, possibly because of different antecedent rainfall conditions or sampling during different phenological periods; both are contingencies to which condition indices must be robust. We did observe some evidence of convergence toward the mean in 2008, with the fitted slope relating 2001 and 2008 FWCI scores significantly below one (0.63, 95% CI = 0.53–0.73). The most variable FWCI component metric was the proportional representation of obligate wetland taxa, suggesting that systematic changes may have been induced by different hydrologic conditions prior to sampling; notably, however, FWCI computed without this component still exhibited a slope significantly less than 1 (0.72, 95% CI = 0.61–0.88). Moreover, there was evidence that species lost from reference sites (higher condition) were replaced by taxa of lower floristic quality, while species lost from agricultural sites (consistently the lowest condition land use category) were replaced by species of higher quality. A significant positive association between FWCI and the ratio of coefficients of conservatism (CC) of species lost to those gained suggests some overfitting in FWCI development. However, despite modest evidence of overfitting, FWCI provides temporally consistent estimates of wetland condition, even under conditions of substantial taxonomic turnover.  相似文献   

3.
Three categories of wetland assessment methods have been recognized by the United States Environmental Protection Agency, including Level 1—Landscape-scale Assessment; Level 2—Rapid Field Methods; and Level 3—Intensive Biological and Physico–Chemical Measures. This study incorporates wetland assessment methods for each assessment level, including the Level 1 Landscape Development Intensity (LDI) index, Level 2 Wetland Rapid Assessment Procedure (WRAP), and Level 3 Florida Wetland Condition Index (FWCI). Using a neighborhood analysis in Geographic Information Systems (GIS), an LDI index map was created using 1995 land use, creating a calculated LDI index value for each 30 m2 area in Florida. Level 1–3 assessment procedures were employed at 193 palustrine emergent (n = 75) and forested (n = 118) wetlands. Significant correlations were found among the multiple Level 1–3 assessment procedures using the nonparametric Spearman’s correlation coefficient for pair-wise comparisons of LDI and WRAP, LDI and diatom FWCI, WRAP and diatom FWCI, LDI and macrophyte FWCI, WRAP and macrophyte FWCI, LDI and macroinvertebrate FWCI, and WRAP and macroinvertebrate FWCI (|r| > 0.50, P < 0.01). Defining the relationship between Level 1–3 assessment methods may be used to estimate the more intensive and species assemblage-specific Level 3 FWCI assessment scores for wetlands with Level 1 or Level 2 scores. Inferences can then be made as to wetland condition based on established correlations with intensive assessment methods.  相似文献   

4.
The vegetation portion of the Florida Wetland Condition Index (FWCI), an index of biological integrity, provided consistent and repeatable measures of condition at eighteen wetlands sampled in two consecutive growing seasons. The sample wetlands reflected a gradient of adjacent land use from non-impacted reference areas to wetlands imbedded within silviculture, cattle pasture and residential areas. Wetlands were described as herbaceous depression (n = 6), forested depression (n = 5) and forested strand or floodplain wetlands (n = 7), and represented different states of succession. Even though the wetlands were unique from one another and occurred across a large geographic area in Florida, the FWCI results calculated for all the wetlands were representative of adjacent land use impacts and not sensitive to natural variation. During the duration of this study, changes in weather from drought to tropical storm conditions, as well as management activities such as fire and herbivory, impacted wetlands. These effects were apparent in the change of species composition between sampling periods; 23–56% of species were different when resampled. Even though composition changed, the proportion of indicators remained consistent. The resulting condition scores suggested a one-to-one relationship between sampling periods.  相似文献   

5.
《Ecological Indicators》2007,7(3):521-540
Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical–chemical parameters, were sampled from 70 small (average 0.86 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to (1) compare diatom assemblage structure between algal types; (2) develop biological indicators of wetland condition; (3) examine synecological relationships between diatom structure and environmental variables, with the ultimate goal of developing an index of biological integrity using a single assemblage. Collected diatom samples were enumerated to 250 valves and identified to species or subspecies. An assessment of wetland condition was made using a landscape-scale human disturbance score (Landscape Development Intensity index, LDI), calculated for each site using land use maps and GIS.Assemblages from both impaired and reference sites were compared using blocked multi-response permutation procedures, the percent similarity index, and visually examined using non-metric multidimensional scaling (NMDS). No ecologically significant compositional differences were found within sites. Mantel's test (Mantel's r = 0.29, p < 0.0001) and NMDS (stress: 14.52, variance: 78.5%) identified epiphytic diatoms as the most responsive to human disturbance. Strong significant correlations (|rs| > 0.50, p < 0.05) were found between epiphytic NMDS site scores and soil pH, specific conductivity, water total phosphorous, and LDI, while soil pH, water color, soil TP, and turbidity were also significantly correlated (p < 0.05).Metrics to assess wetland condition were developed using epiphytic abundance data. Epiphytic taxa sensitive or tolerant to human landscape modification were identified using Indicator Species Analysis, and autecological indices relating diatom sensitivity to nutrients, pH, dissolved oxygen levels, saprobity, salinity, and trophic status were calculated. Fourteen final metrics were identified, scored on an ordinal scale, and combined into the Diatom Index of Wetland Condition (DIWC). The DIWC was highly correlated with the disturbance score (Spearman's rs = −0.71, p < 0.0001), although the results need to be validated.  相似文献   

6.
Biological assessment of aquatic resources requires the availability of bioassessment tools that work in all waterbody types and regions of interest. Developing new assessment tools may require several years of data collection and substantial investment of resources, which may not be an option for some aquatic resource managers. Adapting tools developed for different regions or wetland types may be an attractive alternative to developing new indices, provided they work well in the novel setting. In this study, we explore the transferability of two bioassessment indices for application to depressional wetlands in California, which are wetland type of management concern but for which bioassessment tools don’t currently exist. We tested the applicability of a depressional wetland invertebrate index of biotic integrity (IBI) developed in the San Francisco Bay region of northern California for application in the drier regions of southern California (i.e. geographic transferability), and the ability to apply a riverine benthic diatom IBI to benthic diatoms in depressional wetlands (i.e. water body type transferability). We evaluated the accuracy and responsiveness of the existing Indices for use in depressional wetlands and refined reference definitions and recalibrated thresholds relative to stressor gradients to maximize index performance. Performance of the adapted indices was compared to that of an existing habitat assessment tool (the California Rapid Assessment Method; CRAM) that has been developed for statewide application of depressional wetlands. Finally, we demonstrate application of the revised indices for ambient assessment of depressional wetland condition in southern California. Recalibrating both the macroinvertebrate and diatom indices to reference thresholds based on nutrient concentrations resulted in lower coefficient of variation among reference sites, greater differentiation between reference and non-reference and stronger relationship with stressors than when reference thresholds were based on landscape disturbance. Overall, the simple adjustment of the reference definition allowed us to transfer the indices with no structural changes to the metrics. This approach can facilitate future index adaptations that allow practitioners to include waterbody types for which there is no current index into routine biomonitoring programs.  相似文献   

7.
The spatial and temporal distribution of planktonic, sediment-associated and epiphytic diatoms among 58 sites in Biscayne Bay, Florida was examined in order to identify diatom taxa indicative of different salinity and water quality conditions, geographic locations and habitat types. Assessments were made in contrasting wet and dry seasons in order to develop robust assessment models for salinity and water quality for this region. We found that diatom assemblages differed between nearshore and offshore locations, especially during the wet season when salinity and nutrient gradients were steepest. In the dry season, habitat structure was primary determinant of diatom assemblage composition. Among a suite of physicochemical variables, water depth and sediment total phosphorus (STP) were most strongly associated with diatom assemblage composition in the dry season, while salinity and water total phosphorus (TP) were more important in the wet season. We used indicator species analysis (ISA) to identify taxa that were most abundant and frequent at nearshore and offshore locations, in planktonic, epiphytic and benthic habitats and in contrasting salinity and water quality regimes. Because surface water concentrations of salts, total phosphorus, nitrogen (TN) and organic carbon (TOC) are partly controlled by water management in this region, diatom-based models were produced to infer these variables in modern and retrospective assessments of management-driven changes. Weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions produced reliable estimates of salinity, TP, TN and TOC from diatoms (r2 = 0.92, 0.77, 0.77 and 0.71, respectively). Because of their sensitivity to salinity, nutrient and TOC concentrations diatom assemblages should be useful in developing protective nutrient criteria for estuaries and coastal waters of Florida.  相似文献   

8.
An index of biotic integrity (IBI) is a frequently used approach for assessing the ecological integrity of streams with fish and macroinvertebrates the faunal assemblages most commonly used as indicator taxa. The IBI approach has been much less commonly applied to wetlands, despite the legal, policy and scientific need to assess wetland condition and develop ecological performance goals for wetland creation, restoration and enhancement. While some IBIs are sophisticated systems with statewide application that have undergone one or more testing iterations, many published IBIs are derived from single data sets of a single class of aquatic resource with limited geographic application. The State of Ohio initiated development of a wetland IBI using vascular plants in 1996. Sampling methods were investigated and ultimately a plot-based method was adopted. Potential attributes and different human disturbance gradients were evaluated in several studies. Ultimately, IBIs for emergent, forest and shrub dominated wetlands were developed. Data from the Vegetation IBI-emergent (VIBI-E) is presented to illustrate this process. Subsequent testing and refinement is a critical step in the development of a robust IBI with more than local application. Throughout its initial development (R2 = 0.863, p < 0.001), first major testing iteration (R2 = 82.2%, p < 0.001), second test iteration (R2 = 75.0%, p < 0.001) and third test iteration (R2 = 82.1%, p < 0.001), the VIBI-E has remained significantly correlated with the disturbance gradient. Eight of the original 10 metrics proposed continued to have significant and interpretable relationships with the disturbance gradient, with 4 metrics remaining completely unchanged, and 4 undergoing relatively minor modifications, and 2 being replaced. The VIBI-E and its component metrics were also evaluated against a new disturbance gradient (Landscape Development Index or LDI), derived from land use percentages within a 1 km radius of the wetlands, that was not used during VIBI-E development. The VIBI-E score and 9 of 10 metrics were significantly correlated with the LDI disturbance gradient providing separate confirmation of the VIBI. The Vegetation IBI-E consistently and reliably assessed wetland condition across the whole range of wetland types throughout Ohio's ecological regions.  相似文献   

9.
Wetland restoration is used to compensate for historic and ongoing wetland losses. We compared bird community composition in 24 restored wetlands and 36 natural wetlands in the Parkland region of Alberta. Natural wetlands ranged in exposure to agricultural activity and were binned into three classes (low, medium, and high disturbance). Although the abundance and average species richness of birds were similar between restored and natural wetlands (analysis of variance: p > 0.22), the avian community composition differed significantly among wetland types (multiresponse permutation procedure [MRPP]: A = 0.05, p < 0.001). The avifauna using restored wetlands was distinct from the avifauna using natural wetlands spanning a range of disturbance levels (A = 0.02–0.06; p ≤ 0.006). Notably, restored wetlands were surrounded by less shrub/forest cover and more open water than low‐disturbance, natural wetlands. The majority (58%) of species using the surveyed wetlands were not classified as wetland‐dependent. Interestingly, if only wetland‐dependent species are considered, the avifauna using restored wetlands is no longer distinctive (MRPP: A < 0.01, p = 0.187), although the abundance of wetland‐dependent birds was marginally higher in restored wetlands (n = 24) than in low‐disturbance, natural wetlands (n = 10; Tukey's honestly significant difference test: p = 0.041). Overall, restored wetlands had reduced beta diversity compared to natural wetlands, regardless of whether the avifauna were restricted to wetland‐dependent species or considered comprehensively. This draws into question the legitimacy of the assumption that restoration can fully offset continued losses of natural wetlands.  相似文献   

10.
We assessed the extent and characteristics of geographically isolated wetlands (i.e., wetlands completely surrounded by upland) in a series of watersheds in the urban northeast US. We applied a previously developed index of urbanization to a sample of 10 watersheds selected at random from a set of 30 watersheds whose boundaries lay within the borders of Rhode Island, USA. The index of urbanization in our sample watersheds ranged over more than an order of magnitude and increased with increasing amount of urban land use in the watersheds (r 2 = 0.51, F = 8.22, P = 0.02). The density of isolated wetlands in the watersheds averaged 1.93 ± 0.21 wetlands km−2 and comprised 38.2 ± 1.77% of all wetlands. Isolated wetlands were smaller than those connected to other waters (non-isolated), and accounted for 6.01–16.5% of the total wetland area in the watersheds. The area of isolated wetlands as a percent of all wetland area significantly increased with increasing watershed urbanization (r 2 = 0.62, F = 12.9, P = 0.007). Isolated wetlands were predominantly deciduous forested wetlands, and urban land cover in the 50 m buffer surrounding isolated wetlands was significantly higher than in the 50 m surrounding non-isolated wetlands. The proportion of urban land cover was greater in a 150 than a 50 m buffer surrounding the wetlands. Our results suggest that an increase in the index of urbanization of 50 will result in 7% of the watershed’s wetlands being lost from federal protection. These findings indicate that the process of urbanization, along with accompanying habitat fragmentation, may result in an increase in the vulnerability of wetlands to loss and degradation and therefore has implications for the management and conservation of geographically isolated wetlands.  相似文献   

11.
Functional-based assessments to identify the effects of human-induced disturbances on diatom communities are increasingly used. However, information on the response of functional groups to natural disturbances in temporary depressional wetlands is limited although important for the development of temporary wetland biological assessments. We assessed how diatom life-form and ecological guilds responded to a seasonal hydrological and hydrochemical gradient in three least human-disturbed, temporary depressional wetlands. We assigned species to their respective life-form and ecological guild groups and compared metric composition along the gradient. Overall, temporal variability in alkalinity and ionic composition, essentially Na+, as well as hydrological factors, wetland depth and total relative evapotranspiration (ETo), were good predictors of diatom species and functional group composition. Low profile guilds dominated by pioneer life-forms showed the strongest relationship with higher disturbance levels (i.e. increasing Na+, alkalinity with a decrease in depth). Similarly, the planktonic guild and tube-living, rosette and adnate life-forms dominated at higher disturbance levels whereas the high profile diatoms displayed the reverse trend. Our study shows the effectiveness of functional-based assessments beyond traditional species-based approaches for understanding and predicting community responses to temporal changes in environmental conditions. We also highlight the benefit of using both life-forms and ecological guilds where a broad set of metrics can enhance our understanding of the mechanisms relating diatom composition to environmental stressors and provide signs of underlying ecological processes.  相似文献   

12.
Carbon sequestration in freshwater wetlands in Costa Rica and Botswana   总被引:1,自引:0,他引:1  
Tropical wetlands are typically productive ecosystems that can introduce large amounts of carbon into the soil. However, high temperatures and seasonal water availability can hinder the ability of wetland soils to sequester carbon efficiently. We determined the carbon sequestration rate of 12 wetland communities in four different tropical wetlands—an isolated depressional wetland in a rainforest, and a slow flowing rainforest swamp, a riverine flow-through wetland with a marked wet and dry season, a seasonal floodplain of an inland delta—with the intention of finding conditions that favor soil carbon accumulation in tropical wetlands. Triplicate soil cores were extracted in these communities and analyzed for total carbon content to determine the wetland soil carbon pool. We found that the humid tropic wetlands had greater carbon content (P ≤ 0.05) than the tropical dry ones (96.5 and 34.8 g C kg?1, respectively). While the dry tropic wetlands had similar sequestration rates (63 ± 10 g Cm?2 y?1 on average), the humid tropic ones differed significantly (P < 0.001), with high rates in a slow-flowing slough (306 ± 77 g Cm?2 y?1) and low rates in a tropical rain forest depressional wetland (84 ± 23 g Cm?2 y?1). The carbon accumulating in all of these wetlands was mostly organic (92–100%). These results suggest the importance of differentiating between types of wetland communities and their hydrology when estimating overall rates at which tropical wetlands sequester carbon, and the need to include tropical wetland carbon sequestration in global carbon budgets.  相似文献   

13.
Wetlands are large carbon pools and play important roles in global carbon cycles as natural carbon sinks. This study analyzes the variation of total soil carbon with depth in two temperate (Ohio) and three tropical (humid and dry) wetlands in Costa Rica and compares their total soil C pool to determine C accumulation in wetland soils. The temperate wetlands had significantly greater (P < 0.01) C pools (17.6 kg C m−2) than did the wetlands located in tropical climates (9.7 kg C m−2) in the top 24 cm of soil. Carbon profiles showed a rapid decrease of concentrations with soil depth in the tropical sites, whereas in the temperate wetlands they tended to increase with depth, up to a maximum at 18–24 cm, after which they started decreasing. The two wetlands in Ohio had about ten times the mean total C concentration of adjacent upland soils (e.g., 161 g C kg−1 were measured in a central Ohio isolated forested wetland, and 17 g C kg−1 in an adjacent upland site), and their soil C pools were significantly higher (P < 0.01). Among the five wetland study sites, three main wetland types were identified – isolated forested, riverine flow-through, and slow-flow slough. In the top 24 cm of soil, isolated forested wetlands had the greatest pool (10.8 kg C m−2), significantly higher (P < 0.05) than the other two types (7.9 kg C m−2 in the riverine flow-though wetlands and 8.0 kg C m−2 in a slowly flowing slough), indicating that the type of organic matter entering into the system and the type of wetland may be key factors in defining its soil C pool. A riverine flow-through wetland in Ohio showed a significantly higher C pool (P < 0.05) in the permanently flooded location (18.5 kg C m−2) than in the edge location with fluctuating hydrology, where the soil is intermittently flooded (14.6 kg C m−2).  相似文献   

14.
15.
Diatom indicators of wetland condition were developed and tested by assessing human disturbance, water chemistry, and species composition of benthic, epiphytic, and planktonic diatoms from 20 wetlands sampled for 2 years. One sample from each site was randomly selected to form a development data set, while the rest were used as the test data set. Human disturbance indicated substantial differences among wetlands in hydrologic modification, impervious surface, and potential for non-point source contamination. These landscape alterations were related to increases in pH, non-nutrient ions, and nutrients and decreases in dissolved organic carbon and water color. Pre-existing diatom indicators, calculated with autecological information from lakes and aquatic habitats, correlated highly to relevant water chemistry and human disturbance scores. Weighted average models (WAM) of Cl, conductivity, pH, and alkalinity derived with the Maine development data set correlated to relevant water chemistry and human disturbance of the test wetlands. Diatom assemblage attributes that correlated with human disturbance were selected to combine into a multimetric index of biotic condition (IBC). IBCs and WAMs from benthic and epiphytic diatoms were usually more precisely related to relevant environmental factors than planktonic diatoms. These results showed that human disturbance alkalized wetlands, enriched them with nutrients, and diatom assemblages responded to these changes. Indicator development protocols for streams can be readily adapted for use in wetlands.  相似文献   

16.
Benthic diatoms are widely used indicators of human impacts on stream ecosystems because they are very responsive to changing environmental conditions. However, little research has explicitly focused on their reliability with regards to temporal variation in assemblage structure and environmental conditions. We examined variability in diatom-environment relationships at bi-weekly, monthly, and yearly time scales from 7 reference, 7 agricultural, and 2 acid mine drainage (AMD)-impacted streams, and how nutrient and pH fluctuations may affect the interpretation of diatom metrics and the Diatom Model Affinity (DMA) index. Reference streams had less bi-weekly variability in NO3-N concentrations than non-reference streams. The % eutraphentic diatoms and DMA scores were more strongly correlated with seasonal means of NO3-N and PO4-P concentrations than with same day concentrations. Most nutrient indicator metrics had strong correlations with watershed land use. All 14 non-AMD streams experienced substantial increases in NO3-N and decreases in temperature from November to May, which were associated with high species turnover, substantial changes in community structure, reduced diversity and richness, increased relative abundances of high nutrient diatoms, and decreases in low nutrient diatoms and DMA scores. The % acidophilic diatoms and DMA scores were significantly correlated with increased pH associated with greater precipitation at AMD sites from December to April (r = ?0.77, r = 0.62, respectively; P < 0.01). Yearly, DMA scores for all reference streams were consistently in the minimally impaired category, whereas scores for non-reference streams varied among impairment categories. Reference sites serve as reliable benchmarks for diatom ecological integrity during the summer. In this region, June to October is a recommended time period for diatom sampling in monitoring programs because subsequent shifts in hydrologic regimes, nutrients, and diatom assemblages occurred, affecting all sites and masking among stream differences attributable to agricultural land uses.  相似文献   

17.
Biomonitoring is a common means of evaluating wetlands. It is based on the premise that the community composition of one taxonomic group is indicative of overall biology and the underlying environmental conditions at a wetland. To be a good bioindicator, there must be adequate concordance between the indicator group and other biotic assemblages. Otherwise, multi-assemblage monitoring is necessary to glean a complete picture of wetland condition. In 32 sites ranging from reference wetlands to stormwater retention ponds, we evaluated concordance in community composition among the six most commonly monitored wetland assemblages: waterfowl, wetland dependent songbirds, aquatic macroinvertebrates, and plants in the wet meadow, emergent, and open-water vegetation zones. We also assessed agreement in environmental correlates among these six assemblages and investigated the impact of human disturbance on cross-assemblage concordance. We found that cross-assemblage concordance was positive (p < 0.03 in 14 of 15 pair-wise comparisons, p = 0.06 in 15th case), but relatively low (Mantel R values 0.11–0.37), suggesting that the assemblages are mediocre surrogates for one another. Yet, we found very strong agreement among environmental correlates of the six assemblages, especially along the first axis of assemblage-specific ordinations (mean Spearman rho = 0.923), indicating that despite low concordance, the six assemblages are likely responding to the same environmental gradients. Thus, while a single assemblage may not serve as a surrogate for the other assemblages, it should yield an adequate estimate of underlying environmental conditions and the degree of disturbance. Most important among the environmental correlates were sediment and water nutrient levels, shoreline slope, and the size of wet meadow and emergent vegetation zones. Perhaps most interestingly, we found that the strength of cross-assemblage concordance was greatest in reference wetlands and was lower (p  0.05) in constructed wetlands. This implies that cross-assemblage concordance present in undisturbed sites may not persist in disturbed wetlands where several of these cross-assemblage relationships deteriorate. Furthermore, a general change in cross-assemblage concordance may itself be indicative of human disturbance in wetlands.  相似文献   

18.
19.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

20.
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号