首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Physiological and chemical responses of 17 birch (Betula pendula Roth) clones to 1.5–1.7 × ambient ozone were studied in an open‐field experiment over two growing seasons. The saplings were studied for growth, foliar visible injuries, net photosynthesis, stomatal conductance, and chlorophyll, carotenoid, Rubisco, total soluble protein, macronutrient and phenolic concentrations in leaves. Elevated ozone resulted in growth enhancement, changes in shoot‐to‐root (s/r) ratio, visible foliar injuries, reduced stomatal conductance, lower late‐season net photosynthesis, foliar nutrient imbalance, changes in phenolic composition, and reductions in pigment, Rubisco and soluble protein contents indicating accelerated leaf senescence. Majority of clones responded to ozone by changing C allocation towards roots, by stomatal closure (reduced ozone uptake), and by investment in low‐cost foliar antioxidants to avoid and tolerate ozone stress. A third of clones, showing increased s/r ratio, relied on inducible efficient high‐cost antioxidants, and enhanced leaf production to compensate ozone‐caused decline in leaf‐level net photosynthesis. However, the best ozone tolerance was found in two s/r ratio‐unaffected clones showing a high constitutive amount of total phenolics, investment in low‐cost antioxidants and N distribution to leaves, and lower stomatal conductance under ozone stress. The results highlight the importance of phenolic compounds in ozone defence mechanisms in the birch population. Depending on the genotype, ozone detoxification was improved by an increase in either efficient high‐cost or less efficient low‐cost antioxidative phenolics, with close connections to whole‐plant physiology.  相似文献   

2.
3.
Isoprene reduces visible damage (necrosis) of leaves caused by exposure to ozone but the mechanism is not known. Here we show that in Phragmites leaves isoprene emission was stimulated after a 3-h exposure to high ozone levels. The photosynthetic apparatus of leaves in which isoprene emission was inhibited by fosmidomycin became more susceptible to damage by ozone than in isoprene-emitting leaves. Three days after ozone fumigation, the necrotic leaf area was significantly higher in isoprene-inhibited leaves than in isoprene-emitting leaves. Isoprene-inhibited leaves also accumulated high amounts of nitric oxide (NO), as detected by epifluorescence light microscopy. Our results confirm that oxidative stresses activate biosynthesis and emission of chloroplastic isoprenoid, bringing further evidence in support of an antioxidant role for these compounds. It is suggested that, in nature, the simultaneous quenching of NO and reactive oxygen species by isoprene may be a very effective mechanism to control dangerous compounds formed under abiotic stress conditions, while simultaneously attenuating the induction of the hypersensitive response leading to cellular damage and death.  相似文献   

4.
Proton transfer reaction-time of flight (PTR-TOF) mass spectrometry was used to improve detection of biogenic volatiles organic compounds (BVOCs) induced by leaf wounding and darkening. PTR-TOF measurements unambiguously captured the kinetic of the large emissions of green leaf volatiles (GLVs) and acetaldehyde after wounding and darkening. GLVs emission correlated with the extent of wounding, thus confirming to be an excellent indicator of mechanical damage. Transient emissions of methanol, C5 compounds and isoprene from plant species that do not emit isoprene constitutively were also detected after wounding. In the strong isoprene-emitter Populus alba, light-dependent isoprene emission was sustained and even enhanced for hours after photosynthesis inhibition due to leaf cutting. Thus isoprene emission can uncouple from photosynthesis and may occur even after cutting leaves or branches, e.g., by agricultural practices or because of abiotic and biotic stresses. This observation may have important implications for assessments of isoprene sources and budget in the atmosphere, and consequences for tropospheric chemistry.  相似文献   

5.
Increasing surface levels of UV-B resulting from stratospheric ozone reduction directly affect tropospheric photochemistry. There may also be indirect tropospheric effects due to changes in emission of organic compounds from vegetation. We treated woody and herbaceous isoprene-emitting species in the field with supplemental UV-B simulating 30% ozone depletion. For Quercus gambelii, photosynthesis and isoprene emission were significantly greater in elevated UV-B treatments when expressed on a leaf area basis, but not on a leaf mass basis. Leaves of Mucuna pruriens, however, showed no significant differences in photosynthesis or isoprene emission between treatments, nor when exposed for 45 min to acute high levels of UV-B. Elevated UV-B during growth did not elicit significant isoprene emission from Acer platanoides, a non-emitting species. Other potential UV-B effects, such as changes in leaf area or species composition, which may influence regional isoprene emissions, should be examined.  相似文献   

6.
From sowing, bean (Phaseolus vulgaris L. cv Nerina) plants were exposed to three chronic doses of ozone for 7h.day(-1): non-filtered air (NF), non-filtered air supplied with 40nl.l(-1) ozone (NF+40) and non-filtered air supplied with 60nll(-1) ozone (NF+60). Four harvests were carried out 6, 13, 20 and 27 days after emergence. Either primary leaves, or first trifoliate leaves, or both were sampled as far as possible. For each sampled leaf, visible ozone injuries were registered, the free polyphenolic pool was analysed using HPLC and the dry matter was weighed. Visible damage on leaves was related to both exposure time and ozone concentration added. There were no adverse effects of added ozone on the biomass of primary leaves while a significant reduction of first trifoliates dry matter could be observed (NF+60 atmosphere, third and fourth harvest). Among the normally occurring phenolics, we detected a significant decrease in the accumulation of a hydroxycinnamic acid derivative as the ozone concentration increased. Nevertheless, we demonstrated that this ozone-induced modification could be sometimes distinguishable with difficulties from changes expected to be of development relevance. Beside this phenolic disbalance, we detected a de novo biosynthesis of compounds that closely depended on the level of visible ozone injury. Since their accumulation increased with leaf damage, these ozone-induced phenolics could be used to detect phytotoxic ambient levels of tropospheric ozone.  相似文献   

7.
Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North Mediterranean areas are also discussed.  相似文献   

8.
Isoprene is the primary biogenic hydrocarbon emitted from temperate deciduous forest ecosystems. The effects of varying photon flux density (PFD) and nitrogen growth regimes on rates of isoprene emission and net photosynthesis in potted aspen and white oak trees are reported. In both aspen and oak trees, whether rates were expressed on a leaf area or dry mass basis, (1) growth at higher PFD resulted in significantly higher rates of isoprene emission, than growth at lower PFD, (2) there is a significant positive relationship between isoprene emission rate and leaf nitrogen concentration in both sun and shade trees, and (3) there is a significant positive correlation between isoprene emission rate and photosynthetic rate in both sun and shade trees. The greater capacity for isoprene emission in sun leaves was due to both higher leaf mass per unit area and differences in the biochemical and/or physiological properties that influence isoprene emission. Positive correlations between isoprene emission rate and leaf nitrogen concentration support the existence of mechanisms that link leaf nitrogen status to isoprene synthase activity. Positive correlations between isoprene emission rate and photosynthesis rate support previous hypotheses that isoprene emission plays a role in protecting photosynthetic mechanisms during stress.  相似文献   

9.
Although isoprene synthesis is closely coupled to photosynthesis, both via ATP requirements and carbon substrate availability, control of isoprene emission is not always closely linked to photosynthetic processes. In this study we grew velvet bean (Mucuna sp.) under different levels of photon flux density (PFD) and nitrogen availability in an effort to understand better the degree to which these two processes are linked. As has been observed in past studies, we found that during early leaf ontogeny the onset of positive rates of net photosynthesis precedes that of isoprene emission by 3 to 4 d. Other studies have shown that this lag is correlated with the induction of isoprene synthase activity, indicating that overall control of the process is under control of that enzyme. During leaf senescence, photosynthesis rate and isoprene emission rate declined in parallel, suggesting similar controls over the two processes. This coordinated decline was accelerated when plants were grown with high PFD and high nitrogen availability. The latter effect included declines in the photon yield of photosynthesis, suggesting that an unexplained stress arose during growth under these conditions, triggering a premature decline in photosynthesis and isoprene emission rate. In mature leaves, growth PFD and nitrogen nutrition affected photosynthesis and isoprene emission in qualitatively similar, but quantitatively different, ways. This resulted in a significant shift in the percentage of fixed carbon that was re-emitted as isoprene. In the case of increasing growth PFD, isoprene emission rate was more strongly affected than photosynthesis rate, and more carbon was lost as isoprene. In the case of increasing nitrogen, photosynthesis rate increased more than isoprene emission rate, and leaves containing high amounts of nitrogen lost a lower percentage of their assimilated carbon as isoprene. Taken together, our results demonstrate that, although the general correlation between isoprene emission rate and photosynthesis rate is consistently expressed, there is evidence that both processes are capable of independent responses to plant growth environment.  相似文献   

10.
Poplar (Populus × euroamericana) saplings were grown in the field to study the changes of photosynthesis and isoprene emission with leaf ontogeny in response to free air carbon dioxide enrichment (FACE) and soil nutrient availability. Plants growing in elevated [CO2] produced more leaves than those in ambient [CO2]. The rate of leaf expansion was measured by comparing leaves along the plant profile. Leaf expansion and nitrogen concentration per unit of leaf area was similar between nutrient treatment, and this led to similar source–sink functional balance. Consequently, soil nutrient availability did not cause downward acclimation of photosynthetic capacity in elevated [CO2] and did not affect isoprene synthesis. Photosynthesis assessed in growth [CO2] was higher in plants growing in elevated than in ambient [CO2]. After normalizing for the different number of leaves over the profile, maximal photosynthesis was reached and started to decline earlier in elevated than in ambient [CO2]. This may indicate a [CO2]‐driven acceleration of leaf maturity and senescence. Isoprene emission was adversely affected by elevated [CO2]. When measured on the different leaves of the profile, isoprene peak emission was higher and was reached earlier in ambient than in elevated [CO2]. However, a larger number of leaves was emitting isoprene in plant growing in elevated [CO2]. When integrating over the plant profile, emissions in the two [CO2] levels were not different. Normalization as for photosynthesis showed that profiles of isoprene emission were remarkably similar in the two [CO2] levels, with peak emissions at the centre of the profile. Only the rate of increase of the emission of young leaves may have been faster in elevated than in ambient [CO2]. Our results indicate that elevated [CO2] may overall have a limited effect on isoprene emission from young seedlings and that plants generally regulate the emission to reach the maximum at the centre of the leaf profile, irrespective of the total leaf number. In comparison with leaf expansion and photosynthesis, isoprene showed marked and repeatable differences among leaves of the profile and may therefore be a useful trait to accurately monitor changes of leaf ontogeny as a consequence of elevated [CO2].  相似文献   

11.
The objectives of this study were to determine best conditions for the extraction of phenolic compounds from fresh, frozen and lyophilized basil leaves. The acetone mixtures with the highest addition of acetic acid extracted most of the phenolic compounds when fresh and freeze-dried material have been used. The three times procedure was more effective than once shaking procedure in most of the extracts obtained from fresh basil leaves – unlike the extracts derived from frozen material. Surprisingly, there were not any significant differences in the content of phenolics between the two used procedures in the case of lyophilized basil leaves used for extraction. Additionally, the positive correlation between the phenolic compounds content and antioxidant activity of the studied extracts has been noted. It is concluded that the acetone mixtures were more effective than the methanol ones for polyphenol extraction. The number of extraction steps in most of the cases was also a statistically significant factor affecting the yield of phenolic extraction as well as antioxidant potential of basil leaf extracts.  相似文献   

12.
Leaves of fast‐growing, woody bioenergy crops often emit volatile organic compounds (VOC). Some reactive VOC (especially isoprene) play a key role in climate forcing and may negatively affect local air quality. We monitored the seasonal exchange of VOC using the eddy covariance technique in a ‘coppiced’ poplar plantation. The complex interactions of VOC fluxes with climatic and physiological variables were also explored by using an artificial neural network (Self Organizing Map). Isoprene and methanol were the most abundant VOC emitted by the plantation. Rapid development of the canopy (and thus of the leaf area index, LAI) was associated with high methanol emissions and high rates of gross primary production (GPP) since the beginning of the growing season, while the onset of isoprene emission was delayed. The highest emissions of isoprene, and of isoprene photo‐oxidation products (Methyl Vinyl Ketone and Methacrolein, iox), occurred on the hottest and sunniest days, when GPP and evapotranspiration were highest, and formaldehyde was significantly deposited. Canopy senescence enhanced the exchange of oxygenated VOC. The accuracy of methanol and isoprene emission simulations with the Model of Emissions of Gases and Aerosols from Nature increased by applying a function to modify their basal emission factors, accounting for seasonality of GPP or LAI.  相似文献   

13.
Isoprene emission from plants represents one of the principal biospheric controls over the oxidative capacity of the continental troposphere. In the study reported here, the seasonal pattern of isoprene emission, and its underlying determinants, were studied for aspen trees growing in the Rocky Mountains of Colorado. The springtime onset of isoprene emission was delayed for up to 4 weeks following leaf emergence, despite the presence of positive net photosynthesis rates. Maximum isoprene emission rates were reached approximately 6 weeks following leaf emergence. During this initial developmental phase, isoprene emission rates were negatively correlated with leaf nitrogen concentrations. During the autumnal decline in isoprene emission, rates were positively correlated with leaf nitrogen concentration. Given past studies that demonstrate a correlation between leaf nitrogen concentration and isoprene emission rate, we conclude that factors other than the amount of leaf nitrogen determine the early-season initiation of isoprene emission. The late-season decline in isoprene emission rate is interpreted as due to the autumnal breakdown of metabolic machinery and loss of leaf nitrogen. In potted aspen trees, leaves that emerged in February and developed under cool, springtime temperatures did not emit isoprene until 23 days after leaf emergence. Leaves that emrged in July and developed in hot, midsummer temperatures emitted isoprene within 6 days. Leaves that had emerged during the cool spring, and had grown for several weeks without emitting isoprene, could be induced to emit isoprene within 2 h of exposure to 32°C. Continued exposure to warm temperatures resulted in a progressive increase in the isoprene emission rate. Thus, temperature appears to be an important determinant of the early season induction of isoprene emission. The seasonal pattern of isoprene emission was examined in trees growing along an elevational gradient in the Colorado Front Range (1829–2896 m). Trees at different elevations exhibited staggered patterns of bud-break and initiation of photosynthesis and isoprene emission in concert with the staggered onset of warm, springtime temperatures. The springtime induction of isoprene emission could be predicted at each of the three sites as the time after bud break required for cumulative temperatures above 0°C to reach approximately 400 degree days. Seasonal temperature acclimation of isoprene emission rate and photosynthesis rate was not observed. The temperature dependence of isoprene emission rate between 20 and 35°C could be accurately predicted during spring and summer using a single algorithm that describes the Arrhenius relationship of enzyme activity. From these results, it is concluded that the early season pattern of isoprene emission is controlled by prevailing temperature and its interaction with developmental processes. The late-season pattern is determined by controls over leaf nitrogen concentration, especially the depletion of leaf nitrogen during senescence. Following early-season induction, isoprene emission rates correlate with photosynthesis rates. During the season there is little acclimation to temperature, so that seasonal modeling simplifies to a single temperature-response algorithm.  相似文献   

14.
Isoprene is emitted from the leaves of many plants in a light‐dependent and temperature‐sensitive manner. Plants lose a large fraction of photo‐assimilated carbon as isoprene but may benefit from improved recovery of photosynthesis following high‐temperature episodes. The capacity for isoprene emission of plants in natural conditions (assessed as the rate of isoprene emission under standard conditions) varies with weather. Temperature‐controlled greenhouses were used to study the role of temperature and light in influencing the capacity of oak leaves for isoprene synthesis. A comparison was made between the capacity for isoprene emission and the accumulation of other compounds suggested to increase thermotolerance of photosynthesis under two growth temperatures and two growth light intensities. It was found that the capacity for isoprene emission was increased by high temperature or high light. Xanthophyll cycle intermediates increased in high light, but not in high temperature, and the chloroplast small heat‐shock protein was not expressed in any of the growth conditions. Thus, of the three thermotolerance‐enhancing compounds studied, isoprene was the only one induced by the temperature used in this study.  相似文献   

15.
Loreto F  Delfine S 《Plant physiology》2000,123(4):1605-1610
Eucalyptus spp. are among the highest isoprene emitting plants. In the Mediterranean area these plants are often cultivated along the seashore and cope with recurrent salt stress. Transient salinity may severely but reversibly reduce photosynthesis and stomatal conductance of Eucalyptus globulus leaves but the effect on isoprene emission is not significant. When the stress is relieved, a burst of isoprene emission occurs, simultaneously with the recovery of photosynthetic performance. Later on, photosynthesis, stomatal conductance, and isoprene emission decay, probably because of the onset of leaf senescence. Isoprene emission is not remarkably affected by the stress at different light intensities, CO(2) concentrations, and leaf temperatures. When CO(2) was removed and O(2) was lowered to inhibit both photosynthesis and photorespiration, we found that the residual emission is actually higher in salt-stressed leaves than in controls. This stimulation is particularly evident at high-light intensities and high temperatures. The maximum emission occurs at 40 degrees C in both salt-stressed and control leaves sampled in ambient air and in control leaves sampled in CO(2)-free and low-O(2) air. However, the maximum emission occurs at 45 degrees C in salt-stressed leaves sampled in CO(2)-free and low-O(2) air. Our results suggest the activation of alternative non-photosynthetic pathways of isoprene synthesis in salt-stressed leaves and perhaps in general in leaves exposed to stress conditions. The temperature dependence indicates that this alternative synthesis is also under enzymatic control. If this alternative synthesis still occurs in the chloroplasts, it may involve a thylakoid-bound isoprene synthase.  相似文献   

16.
Isoprene and nitric oxide (NO) are two volatile molecules that are produced in leaves. Both compounds were suggested to have an important protective role against stresses. We tested, in two isoprene-emitting species, Populus nigra and Phragmites australis, whether: (1) NO emission outside leaves is measurable and is affected by oxidative stresses; and (2) isoprene and NO protect leaves against oxidative stresses, both singularly and in combination. The emission of NO was undetectable, and the compensation point was very low in control poplar leaves. Both emission and compensation point increased dramatically in stressed leaves. NO emission was inversely associated with stomatal conductance. More NO was emitted in leaves that were isoprene-inhibited, and more isoprene was emitted when NO was reduced by NO scavenger c-PTIO. Both isoprene and NO reduced oxidative damages. Isoprene-emitting leaves which were also fumigated with NO, or treated with NO donor, showed low damage to photosynthesis, a reduced accumulation of H(2)O(2) and a reduced membrane denaturation. We conclude that measurable amounts of NO are only produced and emitted by stressed leaves, that both isoprene and NO are effective antioxidant molecules and that an additional protection is achieved when both molecules are released.  相似文献   

17.
Heteroblastic Eucalyptus (Eucalyptus globulus L.) leaves were characterized for their functional diversity examining photosynthesis and photosynthesis limitations, transpiration, and the emission of isoprene and monoterpenes. In vivo and combined analyses of gas-exchange, chlorophyll fluorescence, and light absorbance at 830 nm were made on the adaxial and abaxial sides of juvenile and adult leaves. When adult leaves were reversed to illuminate the abaxial side, photosynthesis and isoprene emission were significantly lower than when the adaxial side was illuminated. Monoterpene emission, however, was independent on the side illuminated and similarly partitioned between the two leaf sides. The abaxial side of adult leaves showed less diffusive resistance to CO(2) acquisition by chloroplasts, but also lower ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, than the adaxial leaf side. In juvenile leaves, photosynthesis, isoprene, and monoterpene emissions were similar when the adaxial or abaxial side was directly illuminated. In the abaxial side of juvenile leaves, photosynthesis did not match the rates attained by the other leaf types when exposed to elevated CO(2), which suggests the occurrence of a limitation of photosynthesis by ribulose bisphosphate (RuBP) regeneration. Accordingly, a reduced efficiency of both photosystems and a high non-radiative dissipation of energy was observed in the abaxial side of juvenile leaves. During light induction, the adaxial side of juvenile leaves also showed a reduced efficiency of photosystem II and a large non-radiative energy dissipation. Our report reveals distinct functional properties in Eucalyptus leaves. Juvenile leaves invest more carbon in isoprene, but not in monoterpenes, and have a lower water use efficiency than adult leaves. Under steady-state conditions, in adult leaves the isobilateral anatomy does not correspond to an equal functionality of the two sides, while in juvenile leaves the dorsiventral anatomy does not result in functional differences in primary or secondary metabolism in the two sides. However, photochemical limitations may reduce the efficiency of carbon fixation in the light, especially in the abaxial side of juvenile leaves.  相似文献   

18.
The aim of this study was to evaluate flower and leaf methanol extracts of Artemisia alba Turra for their total phenolic and flavonoid contents, antioxidant capacity and to investigate their phenolic composition. The flower extract was richer in total phenolics and flavonoids and possessed higher antioxidant activity through DPPH and ABTS assays. The UHPLC‐PDA‐MS analysis of the flower and leaf methanol extracts revealed similar phenolic profile and allowed identification of 31 phenolic compounds (flavonoids, coumarins, and phenolic acids) by comparison with the respective reference compounds or tentatively characterized by their chromatographic behavior, UV patterns, and MS fragmentations. The presence of hispidulin, jaceosidin, desmethoxycentaureidin, and dicaffeoyl esters of quinic acid in Aalba is reported herein for the first time. The distribution of flavonoids in Aalba from different origins was discussed from chemotaxonomic point of view.  相似文献   

19.
Among the volatile organic compounds (VOCs) emitted by plants, some are characteristic of stress conditions, but their biosynthesis and the metabolic and environmental control over the emission are still unclear. We performed experiments to clarify whether (1) the emission following wounding can occur at distance from the wounding site, from VOC pools subjected to metabolic signals; and (2) the emission of biogenic VOCs generated by membrane damage (e.g. consequent to wounding or ozone exposure) can also be induced by exposure to high light and high temperature, recurrent in nature. In Phragmites australis, leaf cutting caused large and rapid bursts of acetaldehyde both at the cutting site and on parts of the cut leaf distant from the cutting site. This emission was preceded by a transient stomatal opening and did not occur in conditions preventing stomatal opening. This suggests the presence of a large pool of leaf acetaldehyde whose release is under stomatal control. VOCs other than isoprene, particularly acetaldehyde and (E)-2-hexenal, one of the C-6 compounds formed by the denaturation of membrane lipids, were released by leaves exposed to high temperature and high light. The high-temperature treatment (45 degrees C) also caused a rapid stimulation and then a decay of isoprene emission in Phragmites leaves. Isoprene recovered to the original emission level after suspending the high-temperature treatment, suggesting a temporary deficit of photosynthetically formed substrate under high temperature. Emission of C-6 compounds was slowly induced by high temperature, and remained high, indicating that membrane denaturation occurs also after suspending the high-temperature treatment. Conversely, the emission of C-6 compounds was limited to the high-light episode in Phragmites. This suggests that a membrane denaturation may also occur in conditions that do not damage other important plant processes such as the photochemistry of photosynthesis of photoinhibition-insensitive plants. In the photoinhibition-sensitive Arabidopsis thaliana mutant NPQ1, a large but transient emission of (E)-2-hexenal was also observed a few minutes after the high-light treatment, indicating extensive damage to the membranes. However, (E)-2-hexenal emission was not observed in Arabidopsis plants fumigated with isoprene during the high-light treatment. This confirms that isoprene can effectively protect cellular membranes from denaturation. Our study indicates that large, though often transient, VOC emissions by plants occur in nature. In particular, we demonstrate that VOCs can be released by much larger tissues than those wounded and that even fluctuations of light and temperature regularly observed in nature can induce their emissions. This knowledge adds information that is useful for the parameterization of the emissions and for the estimate of biogenic VOC load in the atmosphere.  相似文献   

20.
The combined effects of ozone (O3) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal‐filtered air, CF, and non‐filtered air +40 ppb, E‐O3) and soil water stress (well‐watered, WW, and mild drought, MD, one‐third irrigation) for 96 days. Consistent with light‐saturated photosynthesis (Asat), intercellular CO2 concentration (Ci) and chlorophyll content, isoprene emission depended on drought, O3, leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (?40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th–15th from the apex) than in upper leaves (6th–8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up‐scaled to the entire‐plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E‐O3. Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号