首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A 30,000 MW, barbiturate sensitive TPNH-linked aldehyde reductase which reduces aromatic aldehydes (3-pyridinecarboxaldehyde, 4-nitrobenzaldehyde, 4-cyanobenzaldehyde), d-glyceraldehyde, d-glucuronate and (+)-camphorquinone was found in liver, kidney, brain and heart tissue from a variety of animals. In livers, rabbit kidney, rabbit heart, and bovine brain a high molecular weight reductase was also found, which was less sensitive to barbiturate inhibition and had higher reactivity for cyclohexanone and d-ribose. The low molecular weight, TPNH-linked aldehyde reductases are probably homologous and should be classified under the systematic name alcohol:NADP oxidoreductase (EC 1.1.1.2). Since the substrate specificity of aldehyde reductase overlaps several previously described TPNH-linked reductases from the same tissues, reexamination of the properties of these enzymes for reclassification as EC 1.1.1.2 is necessary.  相似文献   

2.
1. NADPH-linked aldehyde reductase from pig, ox and rat brain exhibits non-linear reciprocal plots when partially purified enzyme preparations are studied. 2. In pig brain this non-linearity is due to the presence of two distinct aldehyde reductases, which can be separated by DEAE-cellulose chromatography. 3. These two enzymes can be distinguished by several criteria, including pH optima, Michaelis constants for substrates and their inhibitor sensitivity. 4. The probable role of these enzymes in the metabolism of the aldehydes derived from the biogenic amines is discussed.  相似文献   

3.
Molybdenum-containing enzymes, aldehyde oxidase and xanthine oxidase, are important in the oxidation of N-heterocyclic xenobiotics. However, the role of these enzymes in the oxidation of drug-derived aldehydes has not been established. The present investigation describes the interaction of eleven structurally related benzaldehydes with guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase, since they have similar substrate specificity to human molybdenum hydroxylases. The compounds under test included mono-hydroxy and mono-methoxy benzaldehydes as well as 3,4-dihydroxy-, 3-hydroxy-4-methoxy-, 4-hydroxy-3-methoxy-, and 3,4-dimethoxy-benzaldehydes. In addition, various amines and catechols were tested with the molybdenum hydroxylases as inhibitors of benzaldehyde oxidation. The kinetic constants have shown that hydroxy-, and methoxy-benzaldehydes are excellent substrates for aldehyde oxidase (Km values 5x10(-6) M to 1x10(-5) M) with lower affinities for xanthine oxidase (Km values around 10(-4) M). Therefore, aldehyde oxidase activity may be a significant factor in the oxidation of the aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. Compounds with a 3-methoxy group showed relatively high Vmax values with aldehyde oxidase, whereas the presence of a 3-hydroxy group resulted in minimal Vmax values or no reaction. In addition, amines acted as weak inhibitors, whereas catechols had a more pronounced inhibitory effect on the aldehyde oxidase activity. It is therefore possible that aldehyde oxidase may be critical in the oxidation of the analogous phenylacetaldehydes derived from dopamine and noradrenaline.  相似文献   

4.
Abstract— The activity of NADPH-linked aldehyde reductase (EC 1.1.1.2) in various regions of monkey brain was determined in vitro. The highest specific activity of the enzyme was found in areas of the brain stem; including the pons, medulla and midbrain. A greater than 500-fold purification of the monkey brain enzyme was obtained by a combination of ammonium sulphate fractionation and subsequent chromatography on calcium phosphate gel cellulose and DEAE-cellulose. The aldehyde metabolites of the biogenic amines, norepinephrine, serotonin, dopamine and octopamine, were readily reduced by the NADPH-linked aldehyde reductase. The Km values for 3,4-dihydroxyphenylglycolaldehyde, 3,4-dihydroxyphenyl-acetaldehyde, and 5-hydroxyindoleacetaldehyde were 12.0 μm , 6.1 μm and 27 μm , respectively. The maximum velocity (Vmax) for 3,4-dihydroxyphenylglycolaldehyde was, respectively, five-fold or three-fold greater than that determined for 3,4-dihydroxyphenylacetaldehyde or 5-hydroxyindoleacetaldehyde. The highly purified enzyme derived from monkey brain was markedly inhibited by barbiturates, diphenylhydantoin, and chlorpromazine, but not by pyrazole. From data obtained by sucrose density gradient centrifugation and Sephadex chromatography the molecular weight of aldehyde reductase was determined to be about 70,000 daltons.  相似文献   

5.
1. Earlier reports from this and other laboratories have indicated that wide variations exist in estimates of the concentrations of norepinephrine in the brain and heart of the snail Helix aspersa. This is a report on investigations of norepinephrine concentrations in Helix aspersa tissues using high-performance liquid chromatography with electrochemical detection. In addition, the effects of treatment with some amino acid precursors or enzyme inhibitors on the concentrations of norepinephrine, dopamine, 5-hydroxytryptamine, and some of their metabolites were investigated. 2. The levels of norepinephrine in the brain were low (46 ng/g) in comparison to dopamine (2.1) micrograms/g) and 5-hydroxytryptamine (2.6 micrograms/g). Epinephrine was not observed in either snail heart of snail nervous tissue. 3. Administration of L-3,4-dihydroxyphenylalanine resulted in elevated snail brain dopamine, while 3,4-dihydroxyphenylserine treatment increased norepinephrine. Treatment with blockers of tyrosine hydroxylase and aromatic-L-amino acid decarboxylase reduced dopamine concentrations without affecting 5-hydroxytryptamine. 4. The dopamine metabolite 3,4-dihydroxyphenylacetic acid was observed only after administration of L-3,4-dihydroxyphenylalanine or dopamine and then only in very small amounts. At no time was the dopamine metabolite homovanillic acid or the 5-hydroxytryptamine metabolite 5-hydroxyindoleacetic acid observed in brain, heart, or whole-body extracts of the snail. 5. Incubation of nervous tissue with either dopamine or 5-hydroxytryptamine resulted in the production of electrochemically active metabolites which were identified by oxidation characteristics and cochromatography with synthesized standards as the gamma-glutamyl conjugates of the amines. Treatment of snails with 5-hydroxytryptamine or dopamine also resulted in the production of gamma-glutamyl conjugates. 6. The present experiments show that great care must be exercised when measuring monoamines and their metabolites in gastropod tissues by high-performance liquid chromatography with electrochemical detection.  相似文献   

6.
Simulation of biogenic amine metabolism in the brain   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of a number of biogenic amines has been simulated by using data obtained from studies of the individual enzymes from pig brain. It is shown that beta-hydroxylated amines such as noradrenaline and octopamine are metabolized primarily to the alcoholic metabolite whereas amines lacking this group [e.g. dopamine (3,4-dihydroxyphenethylamine) and 5-hydroxytryptamine] are metabolized at low concentrations to give the corresponding acid. Increase in the amine concentration results in an increase in the proportion of the alcoholic metabolite formed and this may in part account for the effects of the drug reserpine on amine metabolism. The effects of disulfiram (Antabuse) and ethanol (acting through its metabolite acetaldehyde) on amine metabolism may be understood in terms of this simulated model. It is shown that drugs that affect this system also cause alterations in the steady-state concentrations of the intermediate aldehydes and the possible implications of this are discussed.  相似文献   

7.
When 1 mM serotonin, dopamine, or norepinephrine was incubated with a monoamine oxidase preparation (mitochondrial membranes) in the presence of 4 mM sodium bisulfite, 85-95% of the amines were oxidized to the corresponding aldehydes. In the absence of bisulfite, the recoveries were only approximately 30%, and dark colored products were formed during the incubations. The aldehydes derived from tyramine, octopamine, methoxytyramine, and normetanephrine were also prepared by the use of this method. The bisulfite-aldehyde compounds were stable during storage at -20 degrees C. Bisulfite-free aldehyde solutions were made by diethylether extraction. When the aldehydes derived from dopamine or serotonin were incubated with rat brain homogenates, they were found to disappear in an aldehyde dehydrogenase- and aldehyde reductase-independent manner. The disappearance of the latter aldehyde was more pronounced, and the results indicated that this aldehyde may react with both proteins and phospholipids.  相似文献   

8.
Abstract— The effects of exposure to an antithyroid drug, methimazole, on brain tyrosine hydroxylase and tryptophan hydroxylase activity, as well as the levels of norepinephrine, dopamine, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid have been investigated in maturing brain. Daily treatment of neonatal rats with methimazole for 30 days induced chemical thyroidectomy as evidenced by significant impairment of body and brain growth. The activities or brain tyrosine hydroxylase and tryptophan hydroxylase and the levels of norepinephrine, dopamine and 5-hydroxytryptamine were markedly altered in a dose- and time-dependent manner in methimazole-treated rats. Conversely, the concentration of brain 5-hydroxyindoleacetic acid was elevated (46%) by methimazole administration. Treatment with the antithyroid drug failed to exert any significant effect on the endogenous levels of brain tryptophan, as well as on the activity of the deaminating enzyme, monoamine oxidase. Administration of triiodothyronine (25 or 100 μg/100 g) to hypothyroid rats for 30 days did not produce any appreciable effect upon the neurochemical parameters related to either norepinephrine or 5-hydroxytryptamine mctabolism. However, increasing the dose of triiodothyronine to 250 μg/100 g significantly elevated the levels of norepinephrine and 5-hydroxytryplamine as well as the activities of the two synthesizing enzymes, tyrosine hydroxylase and tryptophan hydroxylase. Brain 5-hydroxyindoleacetic acid levels were restored to normal values in thyroid hormone-deficient rats treated with this higher dose of triiodothyronine. Evidencc also was obtained to show that chemical thyroidectomy suppressed the spontancous locomotor activity in neonatal rats; the changes being apparent at 15 days of age. Our data support the view that thyroid hormone in neonatal life displays an important regulatory effect on the metabolism of norepinephrine, dopamine and 5-hydroxytryptamine. Since certain amines have been known to be implicated as the neurochemical substrates for behavioural arousal, it is conceivable that the observed hypoactivity in methimazolc-treated rats may, at least in part, be related to impaired maturation of norepinephrine and dopamine-synthesizing systems in brains of cretinous rats.  相似文献   

9.
A number of enzymes have been measured in the striatum of rats in which the dopamine-containing nerve terminals had been unilaterally destroyed by means of unipolar electrolytic lesions of the medial fore-brain bundle. Fourteen and 28 days after such lesions the tyrosine hydroxylase activity of the striatum was reduced to immeasurably low values, but neither aldehyde dehydrogenase, aldehyde reductase, nor acetylcholine esterase was affected when compared with the striatum from the intact side of the same rat or with those from control rats. These results indicate that in the rat the 3 enzymes are not localized with tyrosine hydroxylase, in the dopaminergic nerve terminals of the striatum. This conclusion is supported by a study of the subcellular localization of aldehyde dehydrogenase in rat brain. This enzyme is distributed between the cytosol and the particulate fraction of brain homogenates separated by centrifugal techniques. with no exceptionally high concentration of the enzyme in the synaptosomal fraction. Because neither of the enzymes of post-deaminative catabolism of dopamine is concentrated in the dopaminergic nerve terminals of the striatum of the rat, it is proposed that in this species the amine is not necessarily taken up by the nerve terminals prior to catabolism.  相似文献   

10.
High performance liquid chromatography with coulometric electrochemical detection has been used to achieve simultaneous determination of norepinephrine, epinephrine, 5-hydroxytryptophan, normetanephrine, dopamine, metanephrine, 3,4-dihydroxyphenylacetic acid, N-acetyldopamine, tyramine, tryptophan, 5-hydroxyindoleacetic acid, 5-hydroxytryptamine, N-acetyl-5-hydroxytryptamine, homovanillic acid, tyrosine, p-octopamine, N-acetyl-p-octopamine, and p-synephrine. The procedure has been applied to study monoamine degradation in the insect brain and to demonstrate that N-acetylation rather than oxidative deamination is the primary route of monoamine catabolism in insects.  相似文献   

11.
Abstract— Two NADPH-linked aldehyde reductases (alcohol:NADP+oxidoreductase, EC 1.1.1.2) capable of reducing succinic semialdehyde to the anaesthetic Chydroxybutyrate have been purified from human brain to electrophoretic homogeneity. The first of these enzymes, which is typical of its category, is not specific for succinic semialdehyde and can reduce some aromatic aldehydes at a high rate. It is a monomer of molecular weight about 45,000 and is strongly inhibited by various hypnotics and anticonvulsants. The second enzyme is, in contrast, fairly specific for succinic semialdehyde. It is a dimer of molecular weight about 90,000 and is not inhibited by the hypnotics and anticonvulsants which inhibit the first enzyme. It is thus different from previously described aldehyde reductases from human brain.  相似文献   

12.
Rat kidney was shown to contain two NADPH-linked aldehyde reductases (alcohol:NADP+) oxidoreductase, EC 1.1.1.2) with different substrate affinities. The high-Km aldehyde reductase, which was purified to apparent homogeneity, had a molecular weight of 32 000 as determined by Sephadex G-100 gel filtration, and of 37 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme reduced various aliphatic aldehydes of different carbon-chain lengths besides many chemicals containing aldehyde groups. The Km values for n-hexadecanal and n-octadecanal were 8 microM and 4 microM, respectively. Bovine serum albumin (1.8 mM) stimulated the reduction of n-hexadecanal and n-octadecanal, and increased the Vmax values by about 15-fold without changing the Km values. The kidney enzyme was not distinguishable from the brain and liver high-Km aldehyde reductases in mobility on polyacrylamide gel electrophoresis, immunological properties, peptide maps or substrate specificity.  相似文献   

13.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

14.
Regional development of catecholamine biosynthesis in rat brain   总被引:2,自引:2,他引:0  
Abstract— The ontogenetic development of norepinephrine and dopamine and their associated biosynthetic and degradative enzymes was investigated in five anatomical regions of the rat brain. Clear regional differences were found in the development of both norepinephrine and tyrosine hydroxylase (EC 1.14.3.1). In the case of both norepinephrine and tyrosine hydroxylase, brainstem structures achieved adult levels well before forebrain structures. The development of DOPA decarboxylase (EC 4.1.1.26), monoamine oxidase (EC 1.4.3.4) and catechol-0-methyl transferase (EC 2.1.1.6) did not appear to differmarkedly from area to area. Further analysis of the data revealed that in forebrain structures both the amines and the biosynthetic enzymes developed concurrently. By contrast, in the brainstem structures, there was a dissociation of amine and enzyme development with development of tyrosine hydroxylase, in particular, markedly preceding that of norepinephrine and of DOPA decarboxylase. The bases for both the lower amine levels in the infant brain and the regional developmental differences are discussed in relation to the anatomical organization of the central catecholamine-containing neurons.  相似文献   

15.
Human brain contains multiple forms of aldehyde-reducing enzymes. One major form (AR3), as previously shown, has properties that indicate its identity with NADPH-dependent aldehyde reductase isolated from brain and other organs of various species; i.e., low molecular weight, use of NADPH as the preferred cofactor, and sensitivity to inhibition by barbiturates. A second form of aldehyde reductase ("SSA reductase") specifically reduces succinic semialdehyde (SSA) to produce gamma-hydroxybutyrate. This enzyme form has a higher molecular weight than AR3, and uses NADH as well as NADPH as cofactor. SSA reductase was not inhibited by pyrazole, oxalate, or barbiturates, and the only effective inhibitor found was the flavonoid quercetine. Although AR3 can also reduce SSA, the relative specificity of SSA reductase may enhance its in vivo role. A third form of human brain aldehyde reductase, AR2, appears to be comparable to aldose reductases characterized in several species, on the basis of its activity pattern with various sugar aldehydes and its response to characteristic inhibitors and activators, as well as kinetic parameters. This enzyme is also the most active in reducing the aldehyde derivatives of biogenic amines. These studies suggest that the various forms of human brain aldehyde reductases may have specific physiological functions.  相似文献   

16.
An improved procedure for purifying aldehyde reductase is described. Utilization of Blue Dextran--Sepharose 4B and elimination of hydroxyapatite chromatography greatly improves the yield and ease of purification. Starting with 340 g of kidney tissue (two pig kidneys) approx. 50 mg of purified reductase may be routinely and reproducibly obtained. The purified reductase was used to establish the kinetic reaction mechanism of the enzyme. Initial-velocity analysis and product-inhibition data revealed that pig kidney aldehyde reductase follows an Ordered Bi Bi reaction mechanism in which NADPH binds first before D-glyceraldehyde. The limiting Michaelis constants for D-glyceraldehyde and NADPH were 4.8 +/- 0.7 mM and 9.1 +/- 2.1 micrometer respectively. The mechanism is similar to that of another monomeric oxidoreductase, octopine dehydrogenase, towards which aldehyde reductase exhibits several similarities, but differs from that of other aldehyde reductases. Phenobarbital is a potent inhibitor of aldehyde reductase, inhibiting both substrate and cofactor non-competitively (Ki = 80.4 +/- 10.5 micrometer and 66.9 +/- 1.6 micrometer respectively). Barbiturate inhibition seems to be a common property of NADPH-dependent aldehyde reductases.  相似文献   

17.
Two alcohol dehydrogenases (alcohol: NAD oxidoreductase, EC 1.1.1.1 and alcohol: NADP oxidoreductase, EC 1.1.1.2) were partially purified from extracts of strawberry seeds by conventional methods. Some of physical, chemical and kinetic properties of the enzymes are described. On the basis of gel filtration, the molecular weights were estimated to be approximately 78,000 for NAD-dependent enzyme and 82,000 for NADP-dependent enzyme. Thiol-reacting compounds inhibited both enzymes. NAD-dependent alcohol dehydrogenase reacted only with aliphatic alcohols and aldehydes, while aromatic and terpene alcohols and aldehydes were the better substrates for NADP-dependent alcohol dehydrogenase than aliphatic alcohols and aldehydes.  相似文献   

18.
Histochemical Study of Aldehyde Dehydrogenase in the Rat CNS   总被引:3,自引:0,他引:3  
A quantitative histochemical method was developed to determine aldehyde dehydrogenase (EC 1.2.1.3; ALDH) activity in the CNS. The distribution of ALDH activity in all rat brain and spinal cord regions is described. Among the CNS neuron structures, high enzyme activity was found in receptor and effector neurons, whereas low activity was noted in perikarya of the majority of intermediate neurons, including all aminergic neurons. A positive correlation was demonstrated between the distribution of ALDH activity among rat CNS microregions (our own data) and the density of dopaminergic terminals, dopamine content, and monoamine oxidase activity (literature data) among the same microregions. They may reflect a spatial linkage between ALDH and the predicted sites of natural aldehyde production. Lower enzyme activity was found in phylogenetically younger brain structures. It may explain the differential resistance of CNS structures to ethanol (acetaldehyde). Among the barrier CNS structures, moderate ALDH activity was found in capillaries and surrounding astrocytes and high activity was noted in ependimocytes covering the brain cavities and those of the vascular plexus. This provides realization of the function of ALDH as a brain metabolic barrier for aldehydes.  相似文献   

19.
Investigation of NADP-dependent aldehyde reductase activity in mouse liver led to the finding that two distinct reductases are separable by DE52 ion exchange chromatography. Aldehyde reductase I (AR I) appears in the effluent, while aldehyde reductase II (AR II) is eluted with a salt gradient. By several procedures AR II was purified over 1100-fold from liver supernatant fraction, but AR I could be pruified only 107-fold because of its instability. The two enzymes are different in regard to pH optimum, substrate specificity, response to inhibitors, and reactivity with antibody to AR II. While both enzymes utilize aromatic aldehydes well, only AR II ACTS ON D-glucuronate, indicating that it is the aldyhyde reductase recently reported to be identical to NADP-L-gulonate dehydrogenase. The presence of two NADP-linked aldehyde reductases in liver has apparently not heretofore been reported.  相似文献   

20.
NAD-dependent succinic semialdehyde dehydrogenase (EC 1.2.1.24) has been purified to homogeneity from human brain via ion-exchange chromatography and affinity chromatography employing Blue Sepharose and 5'-AMP Sepharose. Succinic semialdehyde dehydrogenase was never previously purified to homogeneity from any species; this preparation therefore allows the determination of its molecular weight, subunit molecular weight, subunit composition, isoelectric points, and substrate specificity for the first time. The enzyme is a tetramer of Mr230,000 to 245,000 and consists of weight-nonidentical subunits (Mr 61,000 and 63,000). On isoelectric focusing the enzyme separates into five bands with the following isoelectric points: 6.3, 6.6, 6.8, 6.95, and 7.15. Its substrates include glutaric semialdehyde, nitrobenzaldehyde, and short chain aliphatic aldehydes in addition to succinic semialdehyde which is the best substrate. The Km values for succinic semialdehyde, acetaldehyde, and propionaldehyde are 1,875, and 580 microM, respectively. The enzyme is inactive with 3,4-dihydroxyphenylacetaldehyde and indole-3-acetaldehyde as substrates. Its subcellular localization is in the mitochondrial fraction. Succinic semialdehyde dehydrogenase is sensitive to inhibition by disulfiram (a drug used therapeutically to produce alcohol aversion) resembling, in this respect, aldehyde dehydrogenase (EC 1.2.1.3). It does not, however, interact with the antibody developed in the rabbit vs aldehyde dehydrogenase, suggesting that the two enzymes are structurally distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号