首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discovery of glycogenin and the priming mechanism for glycogen biogenesis   总被引:11,自引:0,他引:11  
The biogenesis of glycogen in skeletal muscle requires a priming mechanism that has recently been elucidated. The first step is catalysed by a protein tyrosine glucosyltransferase and involves the formation of a novel glycosidic linkage, namely the covalent attachment of glucose to a single tyrosine residue (Tyr194) on a priming protein, termed glycogenin. The next stage is the extension of the glucan chain from Tyr194 and involves the sequential addition of up to seven further glucosyl residues. This reaction is brought about autocatalytically by glycogenin itself, which is a Mn2+/Mg(2+)-dependent UDP-Glc-requiring glucosyltransferase. The glucan primer is elongated by glycogen synthase, but only when glycogenin and glycogen synthase are complexed together. Glycogen synthase dissociates from glycogenin during the synthesis of a glycogen molecule, enabling glycogen molecules to reach their maximum theoretical size. Each mature glycogen beta particle in muscle contains one molecule of glycogenin attached covalently, and an average one glycogen synthase catalytic subunit bound non-covalently. As evidence accumulates that a priming protein may be a fundamental property of polysaccharide synthesis in general, the molecular details of mammalian glycogen biogenesis may serve as a useful model for other systems.  相似文献   

2.
Glycogenin is the covalently bound protein found in muscle glycogen that is thought to be the primer for glycogen synthesis. We now report that glycogenin contains a phosphoserine residue. From a less than stoichiometric amount of phosphate in glycogenin as isolated, the content may be increased to one molecular proportion, using the catalytic subunit of cAMP-dependent protein kinase. The phosphoserine residue is present within a hitherto-undescribed amino acid sequence. In particular, the serine is not flanked by arginine, previously thought to be an essential adjunct for a serine residue to act as substrate for this kinase. We suggest that the serine phosphate may represent a means of regulating the ability of glycogenin to prime glycogen synthesis.  相似文献   

3.
Structural and functional studies on rabbit liver glycogenin   总被引:4,自引:0,他引:4  
Glycogenin, the protein primer required for the biogenesis of muscle glycogen, has been isolated from rabbit liver glycogen. The protein comprised 0.0025% of liver glycogen by mass, 200-fold lower than the glycogenin content of muscle glycogen. Structural analyses, including determination of the amino acid sequence surrounding the glucosylated-tyrosine residue, showed identity with muscle glycogenin. Catalytically active liver glycogenin was partially purified and, like the skeletal muscle protein, catalysed an intramolecular, Mn2+- and UDP-Glc-dependent autoglucosylation reaction, forming a primer on which glycogen synthase could act. The results demonstrate that hepatic and muscle glycogenins are almost certainly identical proteins and that liver and skeletal muscle share a common mechanism for the biogenesis of glycogen molecules. The results also indicate that there is about one glycogenin molecule/liver glycogen alpha particle.  相似文献   

4.
Glycogenin initiates the biosynthesis of proteoglycogen, the mammalian glycogenin-bound glycogen, by intramolecular autoglucosylation. The incubation of glycogenin with UDP-glucose results in formation of a tyrosine-bound maltosaccharide, reaching maximum polymerization degree of 13 glucose units at cessation of the reaction. No exhaustion of the substrate donor occurred at the autoglucosylation end and the full autoglucosylated enzyme continued catalytically active for transglucosylation of the alternative substrate dodecyl-maltose. Even the autoglucosylation cessation once glycogenin acquired a mature maltosaccharide moiety, proteoglycogen and glycogenin species ranging rM 47-200 kDa, derived from proteoglycogen, showed to be autoglucosylable. The results describe for the first time the ability of polysaccharide-bound glycogenin for intramolecular autoglucosylation, providing evidence for cessation of the glucose polymerization initiated into the tyrosine residue, by inaccessibility of the acquired maltosaccharide moiety to further autoglucosylation.  相似文献   

5.
In eukaryotic cells, glycogenin is a self-glucosylating protein that primes glycogen synthesis. In yeast, the loss of function of GLG1 and GLG2, which encode glycogenin, normally leads to the inability of cells to synthesize glycogen. In this report, we show that a small fraction of colonies from glg1glg2 mutants can switch on glycogen synthesis to levels comparable to wild-type strain. The occurrence of glycogen positive glg1glg2 colonies is strongly enhanced by the presence of a hyperactive glycogen synthase and increased even more upon deletion of TPS1. In all cases, this phenotype is reversible, indicating the stochastic nature of this synthesis, which is furthermore illustrated by colour-sectoring of colonies upon iodine-staining. Altogether, these data suggest that glycogen synthesis in the absence of glycogenin relies on a combination of several factors, including an activated glycogen synthase and as yet unknown alternative primers whose synthesis and/or distribution may be controlled by TPS1 or under epigenetic silencing.  相似文献   

6.
Glycogenin is a self-glucosylating protein involved in the initiation reactions of glycogen synthesis. Initiation occurs in two stages, requiring first the covalent attachment of a glucose residue to Tyr-194 of glycogenin and then elongation to form an oligosaccharide chain. The latter reaction is known to be catalyzed by glycogenin itself. The glycogenin sequence determined from the protein by Campbell and Cohen (Campbell, D. G., and Cohen, P. (1989) Eur. J. Biochem. 185, 119-125) was used to design oligonucleotide probes to screen a rabbit muscle lambda gt11 library. A cDNA was isolated that predicted an amino acid sequence identical to that of Campbell and Cohen, except that Cys residues replaced Ser-88 and Leu-97. Northern analysis indicated a strongly hybridizing message of 1.8 kilobases, present in most tissues including skeletal muscle, but much weaker in kidney and scarcely detectable in liver. A much weaker 3-kilobase message was also detected in muscle. Polymerase chain reaction was used to isolate DNA fragments encoding a portion of glycogenin from rat and cow. The sequence of this segment was > 90% identical at the amino acid level across the three species, indicating that glycogenin is a highly conserved protein. Using the pET-8c vector, the glycogenin protein was expressed in Escherichia coli. Incubation of the recombinant glycogenin with UDP-[14C]glucose and Mn2+ resulted in labeling of the glycogenin protein, indicating that the recombinant glycogenin was enzymatically active and capable of self-glucosylation. Furthermore, after incubation with UDP-glucose, the recombinant glycogenin could serve as a substrate for glycogen synthase, leading to the production of high M(r) polysaccharide. Therefore, production of functional glycogenin did not require the intervention of any other mammalian protein.  相似文献   

7.
The initiation of glycogen synthesis   总被引:6,自引:0,他引:6  
The claim that glycogen contains protein was first made exactly 100 years ago and has been the subject of contention ever since. It has now been established that rabbit-muscle glycogen contains a covalently bound protein of Mr 37,000, present in equimolar proportion to glycogen. The protein, named glycogenin, is joined to muscle glycogen via a novel linkage involving the hydroxyl group of tyrosine, a fact of possible significance in the light of insulin's message being transmitted by tyrosine phosphorylation. The protein is seen as the biogenetic precursor of glycogen. Its existence suggests an additional mode of regulation of glycogen metabolism since the amount, turnover and cellular location of glycogenin will influence the corresponding parameters for glycogen. A protein “primer” is suggested for the biogenesis of storage polysaccharides in general.  相似文献   

8.
Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His6) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis.  相似文献   

9.
Purified preparations of glycogen synthase are a complex of two proteins, the catalytic subunit of glycogen synthase and glycogenin, present in a 1:1 molar ratio [J. Pitcher, C. Smythe, D. G. Campbell & P. Cohen (1987) Eur. J. Biochem. 169, 497-502]. This complex has now been found to contain a further glucosyltransferase activity that catalyses the transfer of glucose residues from UDP-Glc to glucosylated-glycogenin. The glucosyltransferase, which is of critical importance in forming the primer required for de novo glycogen biosynthesis, is distinct from glycogen synthase in several ways. It has an absolute requirement for divalent cations, a 1000-fold lower Km for UDP-Glc and its activity is unaffected by incubation with UDP-pyridoxal or exposure to 2 M LiBr, which inactivate glycogen synthase by 95% and 100%, respectively. The priming glucosyltransferase and glycogen synthase activities coelute on Superose 6, and the rate of glycosylation of glycogenin is independent of enzyme concentration, suggesting that the reaction is catalysed intramolecularly by a subunit of the glycogen synthase complex. This component has been identified as glycogenin, following dissociation of the subunits in 2 M LiBr and their separation on Superose 12. The glycosylation of isolated glycogenin reaches a plateau when five additional glucose residues have been added to the protein, and digestion with alpha-amylase indicates that all the glycogenin molecules contain at least one glucosyl residue prior to autoglucosylation. The priming glucosyltransferase activity of glycogenin is unaffected by either glucose 6-phosphate or by phosphorylation of the catalytic subunit of glycogen synthase. The mechanism of primer formation is discussed in the light of the finding that glycogenin is an enzyme that catalyses its own autoglucosylation.  相似文献   

10.
In Ascaris suum, muscle glycogen is synthesized during host feeding intervals and degraded during nonfeeding intervals. Glycogen accumulation is up to 12-fold greater than that observed in mammalian muscle. Previous studies have established that many aspects of the parasite glycogen metabolism are comparable with the host, but a novel form of glycogen synthase designated GSII also occurs in the parasite. In this report glycogenin has been identified as the core protein in both mature glycogen and the GSII complex. Digestion of GSII complex glycogen generates discreet intermediates that may correspond to a proglycogen pool, whereas digestion of mature glycogen does not generate these intermediates. Because both GSII complex glycogen and mature glycogen serve as GSII substrates, the GSII complex likely represents an intermediate between glycogenin and mature glycogen. The regulation of glycogenin synthesis or the regulation of GSII activity that converts glycogenin to proglycogen, or both, may account for high levels of polysaccharide accumulation that are essential for A. suum survival.  相似文献   

11.
The ability of monomeric glycogenin to autoglucosylate by an intramolecular mechanism of reaction is described using non-glucosylated and partially glucosylated recombinant glycogenin. We determined that monomer glycogenin exists in solution at concentration below 0.60-0.85 μM. The specific autoglucosylation rate of non-glucosylated and glucosylated monomeric glycogenin represented 50 and 70% of the specific rate of the corresponding dimeric glycogenin species. The incorporation of a unique sugar unit into the tyrosine hydroxyl group of non-glucosylated glycogenin, analyzed by autoxylosylation, occurred at a lower rate than the incorporation into the glucose hydroxyl group of the glucosylated enzyme. The intramonomer autoglucosylation mechanism here described for the first time, confers to a just synthesized glycogenin molecule the capacity to produce maltosaccharide primer for glycogen synthase, without the need to reach the concentration required for association into the more efficient autoglucosylating dimer. The monomeric and dimeric interconversion determining the different autoglucosylation rate, might serve as a modulation mechanism for the de novo biosynthesis of glycogen at the initial glucose polymerization step.  相似文献   

12.
The de novo biosynthesis of glycogen is catalyzed by glycogenin, a self-glucosylating protein primer. To date, the role of glycogenin in regulating glycogen metabolism and the attainment of maximal glycogen levels in skeletal muscle are unknown. We measured glycogenin activity after enzymatic removal of glucose by alpha-amylase, an indirect measure of glycogenin amount. Seven male subjects performed an exercise and dietary protocol that resulted in one high-carbohydrate leg (HL) and one low-carbohydrate leg (LL) before testing. Resting muscle biopsies were obtained and analyzed for total glycogen, proglycogen (PG), macroglycogen (MG), and glycogenin activity. Results showed differences (P < 0.05) between HL and LL for total glycogen (438.0 +/- 69.5 vs. 305.7 +/- 57.4 mmol glucosyl units/kg dry wt) and PG (311.4 +/- 38.1 vs. 227.3 +/- 33.1 mmol glucosyl units/kg dry wt). A positive correlation between total muscle glycogen content and glycogenin activity (r = 0.84, P < 0.001) was observed. Similar positive correlations (P < 0.05) were also evident between both PG and MG concentration and glycogenin activity (PG, r = 0.82; MG, r = 0.84). It can be concluded that glycogenin does display activity in human skeletal muscle and is proportional to glycogen concentration. Thus it must be considered as a potential regulator of glycogen synthesis in human skeletal muscle.  相似文献   

13.
Proteoglycogen glycogenin is linked to the glucose residue of the C-chain reducing end of glycogen. We describe for the first time the release by isoamylase and isolation of C-chain-bound glycogenin (C-glycogenin) from proteoglycogen. The treatment of proteoglycogen with alpha-amylase releases monoglucosylated and diglucosylated glycogenin (a-glycogenin) which is able to autoglucosylate. It had been described that isoamylase splits the glucose-glycogenin linkage of fully autoglucosylated glycogenin previously digested with trypsin, releasing the maltosaccharide moiety. It was also described that carbohydrate-free apo-glycogenin shows higher mobility in SDS-PAGE and twice the autoglucosylation capacity of partly glucosylated glycogenin. On the contrary, we found that the C-glycogenin released from proteoglycogen by isoamylolysis shows lower mobility in SDS-PAGE and about half the autoglucosylation acceptor capacity of the partly glucosylated a-glycogenin. This behavior is consistent with the release of maltosaccharide-bound glycogenin instead of apo-glycogenin. No label was split from auto-[14C]glucosylated C-glycogenin or fully auto-[14C]glucosylated a-glycogenin subjected to isoamylolysis without previous trypsinolysis, thus proving no hydrolysis of the maltosaccharide-tyrosine linkage. The ability of C-glycogenin for autoglucosylation would indicate that the size of the C-chain is lower than the average length of the other glycogen chains.  相似文献   

14.
Glycogenin is a self-glucosylating protein involved in the initiation of glycogen biosynthesis. Self-glucosylation leads to the formation of an oligosaccharide chain, which, when long enough, supports the action of glycogen synthase to elongate it and form a mature glycogen molecule. To identify possible regulators of glycogenin, the yeast two-hybrid strategy was employed. By using rabbit skeletal muscle glycogenin as a bait, cDNAs encoding three different proteins were isolated from the human skeletal muscle cDNA library. Two of the cDNAs encoded glycogenin and glycogen synthase, respectively, proteins known to be interactors. The third cDNA encoded a polypeptide of unknown function and was designated GNIP (glycogenin interacting protein). Northern blot analysis revealed that GNIP mRNA is highly expressed in skeletal muscle. The gene for GNIP generates at least four isoforms by alternative splicing. The largest isoform GNIP1 contains, from NH(2)- to COOH-terminal, a RING finger, a B box, a putative coiled-coil region, and a B30.2-like motif. The previously identified protein TRIM7 (tripartite motif containing protein 7) is also derived from the GNIP gene and is composed of the RING finger, B box, and coiled-coil regions. The GNIP2 and GNIP3 isoforms consist of the coiled-coil region and B30.2-like domain. Physical interaction between GNIP2 and glycogenin was confirmed by co-immunoprecipitation, and in addition GNIP2 was shown to stimulate glycogenin self-glucosylation 3-4-fold. GNIPs may represent a novel participant in the initiation of glycogen synthesis.  相似文献   

15.
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.  相似文献   

16.
In this paper we elucidate part of the mechanism of the early stages of the biosynthesis of glycogen. This macromolecule is constructed by covalent apposition of glucose units to a protein, glycogenin, which remains covalently attached to the mature glycogen molecule. We have now isolated, in a 3500-fold purification, a protein from rabbit muscle that has the same Mr as glycogenin, is immunologically similar, and proves to be a self-glucosylating protein (SGP). When incubated with UDP-[14C]glucose, an average of one molecular proportion of glucose is incorporated into the protein, which we conclude is the same as glycogenin isolated from native glycogen. The native SGP appears to exist as a high-molecular-weight species that contains many identical subunits. Because the glucose that is self-incorporated can be released almost completely from the acceptor by glycogenolytic enzymes, the indication is that it was added to a preformed chain or chains of 1,4-linked alpha-glucose residues. This implies that SGP already carries an existing maltosaccharide chain or chains to which the glucose is added, rather than glucose being added directly to protein. The putative role of SGP in glycogen synthesis is confirmed by the fact that glucosylated SGP acts as a primer for glycogen synthase and branching enzyme to form high-molecular-weight material. SGP itself is completely free from glycogen synthase. The quantity of SGP in muscle is calculated to be about one-half the amount of glycogenin bound in glycogen.  相似文献   

17.
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation.  相似文献   

18.
Glycogenolysis results in the selective catabolism of individual glycogen granules by glycogen phosphorylase. However, once the carbohydrate portion of the granule is metabolized, the fate of glycogenin, the protein primer of granule formation, is not known. To examine this, male subjects (n = 6) exercised to volitional exhaustion (Exh) on a cycle ergometer at 75% maximal O2 uptake. Muscle biopsies were obtained at rest, 30 min, and Exh (99 +/- 10 min). At rest, total glycogen concentration was 497 +/- 41 and declined to 378 +/- 51 mmol glucosyl units/kg dry wt following 30 min of exercise (P < 0.05). There were no significant changes in proglycogen, macroglycogen, glycogenin activity, or mRNA in this period (P > or = 0.05). Exh resulted in decreases in total glycogen, proglycogen, and macroglycogen as well as glycogenin activity (P < 0.05). These decrements were associated with a 1.9 +/- 0.4-fold increase in glycogenin mRNA over resting values (P < 0.05). Glycogenolysis in the initial exercise period (0-30 min) was not adequate to induce changes in glycogenin; however, later in exercise when concentration and granule number decreased further, decrements in glycogenin activity and increases in glycogenin mRNA were demonstrated. Results show that glycogenin becomes inactivated with glycogen catabolism and that this event coincides with an increase in glycogenin gene expression as exercise and glycogenolysis progress.  相似文献   

19.
Rabbit skeletal muscle glycogen previously has been shown to be covalently bound to a 40,000-Da protein ("glycogenin") via a novel glucosyl-tyrosine linkage [I.R. Rodriguez and W.J. Whelan (1985) Biochem. Biophys. Res. Commun. 132, 829-836]. Antibodies raised against rabbit skeletal muscle glycogenin cross-react with a similar protein present in rabbit heart and liver glycogens, as well as with a 42,000-Da "acceptor protein" present in high-speed supernatants of rabbit muscle, heart, retina, and liver. This 42,000-Da protein incorporates [U-14C]Glc when an ammonium sulfate fraction prepared from the tissue supernatants is incubated with UDP-[U-14C]Glc. The [U-14C]Glc incorporated can be removed quantitatively by treatment with amylolytic enzymes, indicating that the [U-14C]Glc incorporation represents elongation of a preexisting glucan attached to the acceptor protein. Furthermore, a commercial preparation of rabbit skeletal muscle glycogen synthase contains this 42,000-Da protein. We propose that the 42,000-Da protein represents the free form of glycogenin in tissues, with its covalently attached glucan chain(s) providing a "primed" elongation site for glycogen synthesis.  相似文献   

20.
We examined whether the protein level and/or activity of glycogenin, the protein core upon which glycogen is synthesized, is limiting for maximal attainable glycogen levels in rat skeletal muscle. Glycogenin activity was 27.5 +/- 1.4, 34.7 +/- 1.7, and 39.7 +/- 1.3 mU/mg protein in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. A similar fiber type dependency of glycogenin protein levels was seen. Neither glycogenin protein level nor the activity of glycogenin correlated with previously determined maximal attainable glycogen levels, which were 69.3 +/- 5.8, 137.4 +/- 10.1, and 80.0 +/- 5.4 micromol/g wet wt in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. In additional experiments, rats were exercise trained by swimming, which resulted in a significant increase in the maximal attainable glycogen levels in soleus muscles ( approximately 25%). This increase in maximal glycogen levels was not accompanied by an increase in glycogenin protein level or activity. Furthermore, even in the presence of very high glycogen levels ( approximately 170 micromol/g wet wt), approximately 30% of the total glycogen pool continued to be present as unsaturated glycogen molecules (proglycogen). Therefore, it is concluded that glycogenin plays no limiting role for maximal attainable glycogen levels in rat skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号