首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A universal method for the complete assessment of atmospheric fungal spores does not exist, which is continuous, volumetric and non-selective, and offers at the same time reliable identification of the collected spores. To perform a survey of airborne fungal spores, a choice has to be made between a viable and non-viable method. For the study carried out in Leiden, the non-viable, continuous volumetric method has been employed, showing the results over a period of 10 years, for 10 microscopically identifiable fungal spore types. Of this selection,Cladosporium spores have by far the highest airborne quantities, with an average annual total of the daily averages of over 700 000.Botrytis, Ustilago andAlternaria follow with much lower spore concentrations of between 20 000 and 30 000 as annual totals. The spore types ofEpicoccum, Erysiphe, Entomophthora, Torula, Stemphylium, andPolythrincium are represented with annual sums lower than 10 000. A spore calendar shows the overall seasonal appearance of the 10 selected types.  相似文献   

2.
Cladosporium spores are ubiquitous in the air and are included in the fungal contaminants that define environmental quality. This paper provides an updated review of their concentration in the Iberian Peninsula, based on data from 12 sampling stations collected using a common non-viable volumetric sampling method and the same subsequent data-treatment techniques. The database comprised 84 annual periods, covering the period 1993–2009. Mean annual total spore concentrations for each station, calculated as the sum of daily concentrations, ranged from 54 459 in Cartagena to 933 485 in Sevilla; other sampling stations recorded annual total spores between 93 052 (Porto) and 579 953 (Mérida). Analysis of annual spore-distribution patterns revealed either one or two peaks (spring and fall) depending on the location and prevailing climate of the area where the sampling stations have been placed. For all stations, average temperature was the meteorological parameter displaying the strongest positive correlation with airborne spore concentrations.  相似文献   

3.
This study was carried out over a 2-year period (2001 and 2002) with the aim of identifying the fungal population in the aerosol of the Southern city of Caxias do Sul, RS, Brazil. Sampling was performed using Hirstȁ9s non-viable volumetric method. Our results show the presence of a large number of fungal spore types, a total of 41. Three groups were predominant: Deuteromycotina, Ascomycotina and Basidiomycotina. In 2001, Deuteromycotina taxa represented 44.61% of the total annual spore counts, with the largest concentration occurring in the fall (58,637 spores); in 2002, it represented 40.03% of the total annual spore counts, and the largest concentration was obtained in the summer (68,317 spores). Ascomycotina was present at the same level (24.5%) in both years of sampling, and the highest concentrations were found out in the summer (2001: 42,183 spores; 2002: 29,461 spores). Basidiomycotina represented 22.37% of the total annual spore counts in 2001, and 20.41% in 2002, with the largest concentrations found in the summer (2001: 35,988 spores; 2002: 30,212 spores). The most frequent fungi found during the study period were Cladosporium, Coprinus, Leptosphaeria, Aspergillus/Penicillium and Ganoderma. Permanent aerobiological monitoring would be necessary to detect associated environmental variations.  相似文献   

4.
Nicoleta Ianovici 《Grana》2017,56(6):424-435
The present aeromycological investigation was undertaken to study atmospheric fungal spores in Timi?oara (western Romania). This study was carried out using a Hirst type volumetric sampler. The study revealed the existence of a rich airborne mycoflora. The atmospheric fungal spores were classified and evaluated into three groups (‘major’, ‘minor’ and ‘sporadic’) depending upon their catch percentage in the air. Cladosporium/Fusarium/Leptosphaeria-group, Alternaria, Helminthosporium airborne fungal spores and airborne fungal fragments regularly recorded (frequency 100% of days). Cladosporium accounted for 81.09% of the outdoor fungal spores. The airborne fungal fragments have been identified as abundant in our geographic area. Spearman’s correlations were applied to meteorological parameters and airborne fungal spore concentrations. In addition, correlations were calculated between the fungal spore concentrations and the meteorological variables from the previous day. A total of eleven weather factors were selected for this investigation. Following Spearman’s correlations, I identified two patterns of behaviour: most of the airborne fungal spores prefer cloudiness, lower near-surface soil temperature, lower atmospheric pressure, higher relative humidity and precipitation (pattern A) while other spore concentrations favour increased sunshine, higher near-surface soil temperature and dry conditions (pattern B). The behaviour of some fungal spores during the warm season has proven unclear (pattern C). This study demonstrates the need for investigations throughout the year and the evaluation with complementary statistical methods, regarding the correct interpretation of airborne mycoflora relationships with meteorological parameters.  相似文献   

5.
Little research has been carried out in London concerning fungal spore prevalence yet this information may help to elucidate geographical patterns of asthma and hay fever. Although many types of spore reach peak concentrations outdoors in late-summer, the incidences in the indoor environment may be more important through the winter because of heating and poor ventilation. Daily average concentrations of fungal spores in the ambient atmosphere were monitored with a Burkard volumetric spore trap on an exposed roof in North London from autumn 1991 until the summer of 1992. Indoor spore measurements were taken in 19 homes in the vicinity through the winter months, both by direct air sampling using a portable Burkard sampler and by dust culture. Trends in the occurrence and concentrations of fungal spores indoors and outdoors were examined. Relationships between the abundance of selected allergenic fungi and features of the houses were analysed including age of dwelling, dampness, cleanliness and presence of pets.Aspergillus andPenicillium were the most frequently occurring spore types in the homes. Overall, high spore incidence was associated with dampness and dust accumulation. The outdoor spore samples revealed generally low concentrations through the winter until March when concentrations of many types includingCladosporium, Epicoccum andAlternaria increased in abundance in response to the warmer weather. Even during the late-spring and early-summer, concentrations of most fungal spores were notably below those reported for rural sites.  相似文献   

6.
The prevalence of airborne fungal spores and pollen grains in the indoor and outdoor environments of a coir factory in Thiruvananthapuram district of Kerala state, India was studied using the Burkard Personal Sampler and the Andersen 2-stage Sampler for 2 years (September 1997 to August 1999). The concentration of pollen grains was remarkably lower than that of fungal spores (ratio of 1:28). There was no large difference in the concentrations and types of fungal spores between the indoor and outdoor environments, with 26 spore types found to be present indoors and 27 types outdoors; of these, 22 were common to both the environments. Aspergillus/Penicillium, Cladosporium, ‘other basidiospores’ and ascospores were the dominant spore types. The total spore concentration was highest in February and lowest in September, and it was significantly higher in 1998–1999 than in 1997–1998. Twenty viable colony-forming types were isolated from inside the coir factory. The most dominant viable fungi isolated were Penicillium citrinum, Aspergillus flavus and Aspergillus niger. The total pollen concentration was higher in the outdoor environment of the coir factory than indoors, with 15 and 17 pollen types, respectively. Grass and Cocos nucifera pollen types were dominant. The dominant spore and pollen types trapped in the two environments of the coir factory are reportedly allergenic and, consequently, workers are at risk of catching respiratory/allergic diseases.  相似文献   

7.
The investigation of airborne fungal spore concentrations was carried out in Szczecin, Poland between 2004 and 2006. The objective of the studies was to determine a seasonal variation in concentrations of selected fungal spore types due to meteorological parameters. The presence of spores of ten taxa: Cladosporium, Ganoderma, Alternaria, Epicoccum, Didymella, Torula, Dreschlera‐type, Polythrincium, Stemphylium and Pithomyces was recorded in Szczecin using a volumetric method (Hirst type). Fungal spores were present in the air in large numbers in summer. The highest concentrations were noted in June, July and August. The peak period was recorded in August for most of the studied spore types: Ganoderma, Alternaria, Epicoccum, Dreschlera‐type, Polythrincium and Stemphylium. Cladosporium and Didymella spores reached their highest concentrations in July while concentrations of Torula were highest in May and Pithomyces in September. Multiple regression analysis was performed for three fungal seasons: 2004, 2005, and 2006. Spore concentrations were positively correlated with minimum temperature for seven spore types in 2004, for five spore types in 2005, and for eight spore types in 2006 (significance level of α = 0.05). Some spore types are also significantly correlation among their concentrations, pressure, relative humidity and rain. Minimum temperature appeared to be the most influential factor for most spore types.  相似文献   

8.
This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m?3; Mérida 53 spores m?3 and Málaga 35 spores m?3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.  相似文献   

9.
The Havana aeromycobiota diversity was studied from November 2010 to October 2011 using two complementary volumetric methods. A total of 35 fungal genera were characterised, 26 of them were recognised only by non-viable methods, six with viable methodology and the other three with both sampling methods. Furthermore, 47 species were identified by cultivation and the spores collected with the non-viable methodology. These could not be included in a specific genus, and thus, were categorised into five fungal types. In general, the main, spread worldwide, mitosporic fungi also predominated the Havana atmosphere. The predominant species were Cladosporium cladosporioides, Aspergillus flavus and Penicillium citrinum. Moreover, several Zygomycetes (Syncephalastrum racemosum, Rhizopus stolonifer and Rhizopus oryzae), Ascomycetes (Chaetomium globosum) and Basidiomycetes such as Coprinus or Ganoderma were isolated. In the present paper, the review of the airborne fungi conducted in previous studies in Cuba was completed by the detection of two new genera and the first isolation of ten new records in the Cuban atmosphere. Most of the fungi detected showed a diurnal pattern with high spore peak at 11.00–12.00.  相似文献   

10.
Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004–2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.  相似文献   

11.
A study of airborne fungal spore was carried out at nine locations in the southern part of the state of Enugu, Nigeria, from March 2005 to February 2006. The aim of the study was to ascertain the variations in selected fungal spore types at the sites owing to weather conditions. The variation in airborne fungal spores of 14 taxa was studied using modified Tauber pollen traps including Alternaria, Corynespora, Curvularia, Drechslera type, Endophragmiella, Botryodiplodia, Ganoderma, Gliomastrix, Nigrospora, Pithomyces, Spegazzinia, Sporidesmium, Tetraploa and Ustilago. The frequency of the spore types recorded showed considerable variation. The highest spore counts were recorded in July, June and October. The highest numbers of fungal spores were recorded during the rainy season (June–October) to early dry season (November–December). The peak of occurrence of most selected fungal spore types was July. The highest percentages of fungal spores were documented at the recording stations Mgbowo Junction, UNTH Ituku Ozalla and Oji River Express Junction. Spearman’s correlation analyses were performed for the monthly amounts of the fungal spore types and monthly meteorological factors. The numbers of Curvularia, Nigrospora and Sporidesmium was significantly correlated with relative humidity, while those of Endophragmiella, Pithomyces and Nigrospora were significantly correlated with temperature. A significant correlation was also found between the number of Nigrospora spores and light intensity and Sporidesmium spores and wind velocity. Relative humidity and temperature seem to be the most important weather conditions affecting the frequency of the selected spore types in the atmosphere.  相似文献   

12.
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a “dry season” and a “rainy season”. A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."  相似文献   

13.
Airborne fungal spore concentrations in Szczecin, Poland, were studied between 2004 and 2006 with the objective of determining a seasonal variation in the concentrations of selected fungal spore types in relation to meteorological parameters. The presence of spores of five taxa, namely, Cladosporium, Ganoderma, Alternaria, Leptosphaeria and Didymella, was recorded using a volumetric method (Hirst type). Fungal spores were present in the air in large numbers during the summer, with the highest concentrations recorded mainly in June, July and August. The peak concentrations of two of the studied spore types, Ganoderma and Alternaria, occurred in August, while the concentrations of Cladosporium, Leptosphaeria and Didymella spores were the highest in July. Multiple regression analysis was performed for three fungal seasons—2004, 2005 and 2006. Spore concentration was found to be positively correlated with the minimum temperature. For some spore types, there was also a significant correlation between concentrations, relative humidity and rain.  相似文献   

14.
The investigation into airborne fungal spore concentrations was conducted in Szczecin (Poland) between 2004 and 2009. The objective of the studies was to determine a seasonal variation in concentrations of amerospores on the basis of meteorological parameters. The presence of spores in Szczecin was recorded using a volumetric method. Fungal spores were present in the air in high numbers in late summer and early autumn. The highest concentrations were noted in September, October and November. The peak period was recorded in August, September, October and November. The highest annual number of spores occurred in 2005 and 2007 and the lowest in 2006. High values of daily concentration of amerospores occurred during the afternoon and late at night. In 2005 and 2007 the late-night maximum was overdue about 1 or 2 h. For daily values of dew point temperature and relative humidity, the coefficients were positive, significant for p = 0.001 and ranged from 0.342 to 0.258. The average wind speed was positively correlated for p = 0.01 and the coefficient was 0.291. The similar relations were noted for hourly values of spore concentrations for p = 0.05, p = 0.01 and p = 0.001. For these spore types, the dew point temperature and relative humidity appeared to be the most influential factor.  相似文献   

15.
The large, outdoor Islip Yard Waste Composting Facility on Long Island, New York was investigated as a source of airborne fungus spores. The Burkard-Hirst volumetric spore trap was used for the first extensive sampling of small mold spores for this application. Samplers were operated continuously from 21 August to 30 November 1992 in the facility and in a suburban community about 540 m from the facility. A control site approximately 10 000 m from the facility was also sampled to establish background levels of fungus spores. The facility site had higher average readings ofAspergillus fumigatus spores than did the community and both were higher than the control.A. fumigatus was the only fungus among 30 categories tracked that differed significantly between the facility and control sites. It was also isolated repeatedly from the compost. Higher average levels ofA. fumigatus were measured in the community when winds blew from the facility, and also during times when the compost was moved or mixed at the facility. No correlation was found between wind direction or work times andA. fumigatus conidia at the control site. The study shows that this compost facility can produce a measurable increase in the number of airborneA. fumigatus conidia both at the edge of the facility and at 540 m downwind. It also demonstrates that the Burkard spore trap can be used for monitoring small, airborne mold spores, but it is a difficult and labor intensive task.  相似文献   

16.
Summary Studies employing volumetric spore trap (VSP) and gravity settling culture plates (GSC) were conducted in order to analyse the air spora of a rice mill at Pavia, Italy, from October-December 1988. Results revealed a variety of fungal spores belonging to different genera and including recognized rice pathogenic fungi. The most frequent genera by GSC method includedAcremonium, Alternaria, Aspergillus, Aureobasidium, Cladosporium, Epicoccum, Fusarium, Helminthosporium, Mucor, Nigrospora, Penicillium, Rhizopus, Trichoderma, Trichothecium, and some unidentified fungi. Environmental assessment of fungal spores by VSP revealed that the most prevalent fungi were:Alternaria, Cladosporium, Epicoccum, Helminthosporium, Nigrospora, Pyricularia, Tilletia and hyaline, dark and coloured types of ascospores and basidiospores. Airborne fungal spore concentrations were particularly high (5,000–6,000 spores/m3) in the rooms of the rice mill where the initial stages of rough rice transformation take place, and dropped to 2,500 spores/m3 in the last room, where workers are. During a temporary interruption of the working processes, air spora concentration dropped below 1,000 spores/m3.Cladosporium, Epicoccum andNigrospora spores were predominant in all subdivisions of the indoor environments of the rice mill.  相似文献   

17.
I. Kasprzyk  M. Worek 《Aerobiologia》2006,22(3):169-176
The concentrations of airborne fungal spores were measured during 2001–2002 in two sites in Poland—one in the city and the other in the countryside. The sites differed in habitat characteristics, such as urbanisation level, vegetation and microclimate. The aim of the study was to determine if, and in which way, land use type would affect spore occurrence. The volumetric method was used, and ten easily identifiable spore types were sampled and anyalysed: Alternaria, Botrytis, Cladosporium, Epiccocum, Ganoderma, Pithomyces, Polythrincium, Stemphylium, Torula and Drechslera. The season of spore occurrence was determined using the 90% method. The fungal spores studied were very frequent in the air (in most instances at a frequency higher than 50%). The most common spores were those of Cladosporium, with a frequency range of 83.1–90.5%. In both years the proportion of Cladosporium spores was statistically significantly higher in the city. In both 2001 and 2002 the total seasonal sum of all the spores was higher in the countryside than in the city as was the Seasonal Fungal Index (SFI) values and average concentrations of Botrytis, Ganoderma and Torula. These latter three genera are usually represented as pathogens of plants. The mean spore concentrations of most taxa were significantly higher in the rural environment. Correlation coefficients between daily concentrations at both sites for most of the taxa studied were significant, but with lower correlation values between variables. Such results indicate that the values from the sites are weakly interdependent. The study confirms that land use type may very likely have an impact on the course of spore occurrence, the mean daily concentrations of spores as well as SFI values.  相似文献   

18.
Concentration of airborne fungal spores inindoor and outdoor environments of a sawmill in Palakkad district of Kerala, India was studied with Burkard Personal Slide Sampler from January to December 1997. Total spore concentration in the indoor and outdoor showed a 3:2 ratio. Higher spore count was observed in indoor in January and in outdoor in October. Thirty three fungal spore types were identified from the indoor and twenty six from the outdoor. Aspergillus/Penicillium, Cladosporium, Nigrospora, Ganoderma, `other basidiospores' and ascospores were the dominant components of the airspora. Aspergillus/Penicillium, the most dominant spore type in the indoor contributed 51.19% and Cladosporium, the most dominant spore type in the outdoor contributed 44.75% of the total spores. The study revealed high prevalence of predominantly allergenic fungal spores in the sawmill environment.  相似文献   

19.
Fungal airborne spores were studied from September 1996throughout August 1997 in Santiago, Chile. Total concentrationsfluctuated between 308 and 10,334 spores/m3/day withan annual mean of 2,154 per m3, the highest dispersion beingduring April and May. Forty-five percent of total fungal content wasfound in autumn. Thirteen genera and 3 other spore types wereidentified. Cladosporium, the most abundant genera in ouratmosphere, contributed with 70.9% of the total fungi counts andreached an annual mean of 1,527 spores/m3/day, itshighest frequency being in autumn. Alternaria appeared as thesecond most frequent genera, with an annual mean of 40spores/m3/day, representing a 1.9% of theannual fungal catch. Altogether, Stemphylium, Torula, Epicoccum,Ganoderma, Helminthosporium, Chaetomiun, Pleospora and othersreached relative frequencies of 0.5% or less. It is concludedthat fungi are present in Santiago's atmosphere all year round, some ofthem with a clear seasonality.  相似文献   

20.
The concentration of fungal spores in the atmosphere of Madrid was recorded and analyzed for the year 2003. Airborne spores were sampled continuously with a Hirst-type spore trap located on the roof of a building of the School of Pharmacy, at about 8 m above ground level. Correlation between the mean daily spore concentrations and meteorological variables were explored by means of Spearman’s correlation analyses. Seventy spore types were identified, of which the most numerous were Cladosporium, Aspergillaceae (conidia), Coprinus, Agaricales (basidiospores), Ustilago (teliospores) and Pleospora (ascospores). These six types of spores represented more than 70% of the total. Cladosporium represented 41% of the total fungal spores, while Ustilago spores, the concentrations of which in May and June exceeded 47% of the monthly total spore count, constituted the second most important group. Spores reached their highest concentrations in the spring months, and in the autumn, mainly in October. A␣positive significant correlation was found between airborne spore counts and temperature and relative humidity. The results provide a picture of the spectrum of airborne fungal spores present in the atmosphere of Madrid and of the `peak' periods of their presence. Future studies will provide more detailed information on the seasonal dynamics of the spores most frequently found in the air as well as on the extent to which atmospheric conditions influence their release, dispersion and sedimentation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号