首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed anaerobic bacterial consortia have been show to reduce azo dyes and batch decolourisation tests have also demonstrated that predominantly methanogenic cultures also perform azo bond cleavage. The anaerobic treatment of wool dyeing effluents, which contain acetic acid, could thus be improved with a better knowledge of methanogenic dye degradation. Therefore, the decolourisation of two azo textile dyes, a monoazo dye (Acid Orange 7, AO7) and a diazo dye (Direct Red 254, DR254), was investigated in a methanogenic laboratory-scale Upflow Anaerobic Sludge Blanket (UASB), fed with acetate as primary carbon source. As dye concentration was increased a decrease in total COD removal was observed, but the acetate load removal (90%) remained almost constant. A colour removal level higher than 88% was achieved for both dyes at a HRT of 24h. The identification by HPLC analysis of sulfanilic acid, a dye reduction metabolite, in the treated effluent, confirmed that the decolourisation process was due mainly to azo bond reduction. Although, HPLC chromatograms showed that 1-amino-2-naphthol, the other AO7 cleavage metabolite, was removed, aeration batch assays demonstrated that this could be due to auto-oxidation and not biological mineralization. At a HRT of 8h, a more extensive reductive biotransformation was observed for DR254 (82%) than for AO7 (56%). In order to explain this behaviour, the influence of the dye aggregation process and chemical structure of the dye molecules are discussed in the present work.  相似文献   

2.
In this work, the anaerobic period of an anaerobic–aerobic sequencing batch reactor was found to allow the reductive decolourisation of azo dyes. 1-l reactors were operated in 24-h cycles comprising anaerobic and aerobic reaction phases, fed with a simulated textile effluent including a reactive type (Remazol Brilliant Violet 5R) or an acid type (Acid Orange 7) azo dye. The aim was to assess the role of different redox phenomena in the anaerobic decolourisation process. Selective inhibition of sulphate reducing bacteria was carried out in the sulphate-containing, reactive dye fed reactor, resulting in nearly complete, though reversible and inhibition of decolourisation. The acid dye fed reactor's supplementation with sulphate, though resulting in sulphate reduction, did not improve decolourisation. Other redox mediators, namely quinones, were more effective in promoting electron transfer to the azo bond. Bio-augmentation of the acid dye fed reactor with a pure sulphate reducer strain known to decolourise azo dyes, Desulfovibrio alaskensis, was also carried out. Decolourisation was improved, but apparently as a result of the carbon source change required to support D. alaskensis growth. A chemically mediated reduction of the azo bond coupled to biological sulphate reduction, thus seemed to account for the high decolourisation yields of both dyes.  相似文献   

3.
A total of 37 strains of aquatic hyphomycetes and 95 fungal isolates derived from diverse freshwater environments were screened on agar plates for the decolourisation of the disazo dye Reactive Black 5 and the anthraquinone dye Reactive Blue 19. The decolourisation of 9 azo and 3 anthraquinone dyes by 9 selected aquatic fungi was subsequently assessed in a liquid test system. The fungi were representatives of mitosporic anamorphs, and 6 strains had proven ascomycete affiliations. For comparison, 5 white rot basidiomycetes were included. The majority of dyes were decolourised by several mitosporic aquatic isolates at rates essentially comparable to those observed with the most efficient white rot fungus. Under certain conditions, particular aquatic strains decolourised dyes even more efficiently than the best performing white rot basidiomycete. Upon fungal treatment of several dyes, new absorbance peaks appeared, indicating biotransformation metabolites. All together, these results point to the potential of fungi occurring in freshwater environments for the treatment of dye-containing effluents.  相似文献   

4.
The potential of ligninolytic enzymes, including lignin peroxidase (LiP) as the main enzyme from the spent mushroom substrate of Pleurotus sajor-caju was evaluated for the decolourisation of five dyes from azo and anthraquinone dye groups. Among the azo dyes, reactive black 5 and reactive orange 16 were 84.0 and 80.9% decolourised respectively, after 4 h of incubation with 45 U of LiP as compared to 32.1% decolourisation of disperse blue 79. Among the anthraquinone dyes, disperse red 60 was decolourised to 47.2% after 4 h of incubation with 45 U of LiP as compared to 5.9% decolourisation of disperse blue 56. Increasing the LiP concentration and incubation time had a positive effect on the decolourisation of anthraquinone dyes as compared to azo dyes. A 67.9% decolourisation of synthetic textile waste-water was achieved after 4 h of incubation with 25 U of LiP. Increasing the incubation time significantly increased (P < 0.05) the decolourisation of synthetic textile waste-water. Further, there was a 52.4% reduction in the toxicity of synthetic textile waste-water treated with 55 U of LiP for 4 h. However, only 35.7% reduction in toxicity was achieved when the synthetic textile waste-water was treated with 55 U of LiP for 24 h. In this study, it was shown that the spent mushroom substrate of P. sajor-caju could be a cheap source of ligninolytic enzymes for the decolourisation of dyes in textile industry wastewaters.  相似文献   

5.
Toxic effluents containing azo dyes are discharged from various industries and they adversely affect water resources, soil fertility, aquatic organisms and ecosystem integrity. They pose toxicity (lethal effect, genotoxicity, mutagenicity and carcinogenicity) to aquatic organisms (fish, algae, bacteria, etc.) as well as animals. They are not readily degradable under natural conditions and are typically not removed from waste water by conventional waste water treatment systems. Benzidine based dyes have long been recognized as a human urinary bladder carcinogen and tumorigenic in a variety of laboratory animals. Several microorganisms have been found to decolourize, transform and even to completely mineralize azo dyes. A mixed culture of two Pseudomonas strains efficiently degraded mixture of 3-chlorobenzoate (3-CBA) and phenol/cresols. Azoreductases of different microorganisms are useful for the development of biodegradation systems as they catalyze reductive cleavage of azo groups (-N=N-) under mild conditions. In this review, toxic impacts of dyeing factory effluents on plants, fishes, and environment, and plausible bioremediation strategies for removal of azo dyes have been discussed.  相似文献   

6.
Studies were carried out to isolate Acid red 119 (AR-119) resistant and decolourising bacteria from dye contaminated soil and water samples. Six morphologically distinct bacterial isolates resistant to 100 ppm AR-119 dye were isolated directly from the soil and waste contaminated with azo dyes. The most efficient isolate, which showed decolourisation zone of 44 mm on 100 ppm AR-119 containing plate was identified as Bacillus thuringiensis SRDD. Gradual adaptation increased the efficiency of the isolate and within 7h of incubation it showed decolourisation up to 1000 ppm of AR-119 dye in liquid medium. Addition of 300 ppm of AR-119 in each step in ongoing dye decolourisation flask gave more than 90% decolourisation of 300 ppm AR-119 in time as short as 1.25 h. The developed B. thuringiensis showed 50-60% decolourisation of 5000 ppm AR-119 in 7d of incubation. This organism was also able to remove more than 98%, 92%, 95% and 95% colour of C.I. Acid brown 14, C.I. Acid black 210, C.I. Acid violet 90 and C.I. Acid yellow 42 azo dyes at 100 ppm concentration in 24h, respectively. When the developed isolate was studied for bioremediation of actual azo dye contaminated waste it removed 70% colour from the waste in 24h. The developed B. thuringiensis exhibited excellent resistance and decolourisation ability to AR-119 and other acid azo dyes.  相似文献   

7.
Biosorption of simulated dyed effluents by inactivated fungal biomasses   总被引:1,自引:0,他引:1  
Treatment of dyed effluents presents several problems mainly due to the toxicity and recalcitrance of dyestuffs. Innovative technologies, such as biosorption, are needed as alternatives to conventional methods to find inexpensive ways of removing dyes from large volumes of effluents. Inactivated biomasses do not require a continuous supply of nutrients and are not sensitive to the toxicity of dyes or toxic wastes. They can also be regenerated and reused in many cycles and are both safe and environment-friendly. The sorption capacities (SC) of autoclaved biomasses of three Mucorales fungi (Cunninghamella elegans, Rhizomucor pusillus and Rhizopus stolonifer), cultured on two different media, were evaluated against simulated effluents containing concentrations of 1000 and 5000 ppm of a single dye and a mix of 10 industrial textile dyes in batch experiments. SC values of up to 532.8 mg of dye g(-1) dry weight of biomass were coupled with high effluent decolourisation percentages (up to 100%). These biomasses may thus prove to be extremely powerful candidates for dye biosorption from industrial wastewaters. Even better results were obtained when a column system with the immobilised and inactivated biomass of one fungus was employed.  相似文献   

8.
Six mitosporic fungi belonging to five species (Aspergillus flavus var. flavus, Aspergillus ochraceus, Cladosporium cladosporioides, Penicillium glabrum and Penicillium verrucosum) were selected from a screening on 258 fungal strains as the most promising for their ability to remove 2 model dyes in solid conditions. Hence they were tested in liquid conditions for their ability to decolourise 3 model dyes and 9 industrial dyes widely used in the textile industry. The influence of the culture medium, particularly its carbon:nitrogen ratio, on biomass development and decolourisation capacity was considered. All the strains were able to grow in the dyed media and displayed various degrees of decolourisation according to the dye and culture medium. The decolourisation was due to biosorption phenomena. Aspergillus ochraceus performed the highest decolourisation yield being able to remove all dyes over 90%. This strain was also found very effective, both in the living and inactivated form, against simulated effluents that mimicked the recalcitrance of real wastewaters being composed of ten different dyes at high concentration (1,000 ppm), in saline solution.  相似文献   

9.
Basic and applied aspects in the microbial degradation of azo dyes   总被引:27,自引:0,他引:27  
Azo dyes are the most important group of synthetic colorants. They are generally considered as xenobiotic compounds that are very recalcitrant against biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several microorganisms are able, under certain environmental conditions, to transform azo dyes to non-colored products or even to completely mineralize them. Thus, various lignolytic fungi were shown to decolorize azo dyes using ligninases, manganese peroxidases or laccases. For some model dyes, the degradative pathways have been investigated and a true mineralization to carbon dioxide has been shown. The bacterial metabolism of azo dyes is initiated in most cases by a reductive cleavage of the azo bond, which results in the formation of (usually colorless) amines. These reductive processes have been described for some aerobic bacteria, which can grow with (rather simple) azo compounds. These specifically adapted microorganisms synthesize true azoreductases, which reductively cleave the azo group in the presence of molecular oxygen. Much more common is the reductive cleavage of azo dyes under anaerobic conditions. These reactions usually occur with rather low specific activities but are extremely unspecific with regard to the organisms involved and the dyes converted. In these unspecific anaerobic processes, low-molecular weight redox mediators (e.g. flavins or quinones) which are enzymatically reduced by the cells (or chemically by bulk reductants in the environment) are very often involved. These reduced mediator compounds reduce the azo group in a purely chemical reaction. The (sulfonated) amines that are formed in the course of these reactions may be degraded aerobically. Therefore, several (laboratory-scale) continuous anaerobic/aerobic processes for the treatment of wastewaters containing azo dyes have recently been described.  相似文献   

10.
A microtitre plate-based method was developed for a fast screening of numerous fungal strains for their ability to decolourise textile dyes. In 3 days, this method allowed to estimate significant fungal decolourisation capability by measuring the absorbance decrease on up to ten dyes. More than 325 white-rot fungi (WRF) strains belonging to 76 fungal genera were compared with regards to their capability to decolourise five azo and two anthraquinone dyes as well as the dyes mixture. The most recalcitrant dyes belonged to the azo group. Several new species unstudied in the bioremediation field were found to be able to efficiently decolourise all the dyes tested.  相似文献   

11.
The azoreductase PpAzoR from Pseudomonas putida shows a broader specificity for decolourization of azo dyes than CotA-laccase from Bacillus subtilis. However, the final products of PpAzoR activity exhibited in most cases a 2 to 3-fold higher toxicity than intact dyes themselves. We show that addition of CotA-laccase to PpAzoR reaction mixtures lead to a significant drop in the final toxicity. A sequential enzymatic process was validated through the use of 18 representative azo dyes and three model wastewaters that mimic real dye-containing effluents. A heterologous Escherichia coli strain was successfully constructed co-expressing the genes coding for both PpAzoR and CotA. Whole-cell assays of recombinant strain for the treatment of model dye wastewater resulted in decolourization levels above 80% and detoxification levels up to 50%. The high attributes of this strain, make it a promising candidate for the biological treatment of industrial dye containing effluents.  相似文献   

12.
The control of water pollution has become of increasing importance in recent years. The release of dyes into the environment constitutes only a small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. Tightening government legislation is forcing textile industries to treat their waste effluent to an increasingly high standard. Currently, removal of dyes from effluents is by physio-chemical means. Such methods are often very costly and although the dyes are removed, accumulation of concentrated sludge creates a disposal problem. There is a need to find alternative treatments that are effective in removing dyes from large volumes of effluents and are low in cost, such as biological or combination systems. This article reviews the current available technologies and suggests an effective, cheaper alternative for dye removal and decolourisation applicable on large scale.  相似文献   

13.
Biodegradation perspectives of azo dyes by yeasts   总被引:1,自引:0,他引:1  
Azo dyes are the largest class of synthetic dyes, which are widely used in the textile industry. The amount of dyestuff does not bind to the fibers and is lost in wastewater during textile processing. The discharge of colored effluents into the environment is not only aesthetically unpleasing. Moreover, dyes and their break-down products cause toxic effects and they affect photosynthetic activity of aquatic systems by reducing light penetration. A number of microorganisms belonging to different taxonomic groups of bacteria, algae, fungi and yeast have been reported for their ability to decolorize azo dyes. In the literature the ability to decolorize azo dyes by yeasts, compared to bacterial and fungal species, has been studied in a few reports. Within this review, an attempt is made to elucidate some basic biological aspects associated with the azo dye degradation by yeasts and enzymes involved that are responsible for degradation process.  相似文献   

14.
Two biological approaches for decolorization of azo sulfonated dyes have been compared: reductive decolorization with the ascomycete yeast Issatchenkia occidentalis and enzymatic oxidative decolorization with Trametes villosa laccase alone or in the presence of the mediator 1-hydroxybenzotriazole. The redox potential difference between the biological cofactor involved in the reductive activity of growing cells and the azo dye is a reliable indication for the decolorization ability of the biocatalyst. A linear relationship exists between the redox potential of the azo dyes and the decolorization efficiency of enzyme, enzyme/mediator, and yeast. The less positive the anodic peak of the dye, the more easily it is degraded oxidatively with laccase. The more positive the cathodic peak of the dye, the more rapidly the dye molecule is reduced with yeast.  相似文献   

15.
Three caprolactam-degrading bacterial isolates grew in liquid synthetic medium containing solubilised solid waste of a nylon-6 production plant as the sole source of carbon and nitrogen. Typically, the caprolactam content of solid waste was decreased by 95% in 72 h by Alcaligenes faecalis. A. faecalis was the most potent caprolactam-degrading bacterium out of the three isolates. The biomass of the bacteria obtained by growth in the solubilised solid waste medium had the ability to decolourise some synthetic azo and triphenylmethane dyes. Decolourisation of dyes was obtained in static condition, in synthetic medium which contained only the components of the solid waste as the sole sources of carbon and nitrogen and also in nutritionally rich medium. The supplementation of yeast extract to solid waste medium did not increase the efficiency of decolourisation in case of two of the bacterial cultures. Depending on the dye, medium and bacteria used, decolourisation in the range of 35–94% was achieved in 48–96 h. The decolourisation was not due to the adsorption of the dyes by the bacterial biomass except in case of Procion Blue MR and Black B. Based on these observations, the simultaneous biological treatment of the solid waste of nylon-6 plant and the decolourisation of synthetic dyes present in wastewater or solid waste is envisaged.  相似文献   

16.
Azo dyes are the major group of synthetic colourants used in industry and are serious environmental pollutants. In this study, Pseudomonas putida MET94 was selected from 48 bacterial strains on the basis of its superior ability to degrade a wide range of structurally diverse azo dyes. P. putida is a versatile microorganism with a well-recognised potential for biodegradation or bioremediation applications. P. putida MET94 removes, in 24 h and under anaerobic growing conditions, more than 80% of the majority of the structurally diverse azo dyes tested. Whole cell assays performed under anaerobic conditions revealed up to 90% decolourisation in dye wastewater bath models. The involvement of a FMN dependent NADPH: dye oxidoreductase in the decolourisation process was suggested by enzymatic measurements in cell crude extracts. The gene encoding a putative azoreductase was cloned from P. putida MET94 and expressed in Escherichia coli. The purified P. putida azoreductase is a 40 kDa homodimer with broad substrate specificity for azo dye reduction. The presence of dioxygen leads to the inhibition of the decolourisation activity in agreement with the results of cell cultures. The kinetic mechanism follows a ping-pong bi–bi reaction scheme and aromatic amine products were detected in stoichiometric amounts by high-performance liquid chromatography. Overall, the results indicate that P. putida MET94 is a promising candidate for bioengineering studies aimed at generating more effective dye-reducing strains.  相似文献   

17.
The textile industry is a substantial consumer of water and produces enormous volumes of contaminated water; the most important contaminants are azo dyes. Microbial processes for the treatment of textile wastewater have the advantage of being cost-effective and environmentally friendly and producing less sludge. The most promising microorganisms for wastewater treatment are those isolated from sites contaminated with dyes or from the sludge of treatment plants because they have adapted to survive in adverse conditions. The mechanism of microbial decolouration occurs from adsorption, enzymatic degradation or a combination of both. Both reductases and oxidases are involved in the microbial degradation process. The goal of microbial treatment is to decolourise and detoxify the dye-contaminated effluents. In this review, we summarise the methodologies used to evaluate the toxicity of azo dyes and their degradation products. Recent studies on the decolouration or degradation of azo dyes using algae, yeast, filamentous fungi and bacteria, genetically modified microorganisms, microbial consortia and microbiological systems combined with Advanced Oxidation Processes (AOPs) and Microbial Fuel Cells (MFCs) are discussed in this review.  相似文献   

18.
Pleurotus sajor-caju PS2001 was screened in Petri dish plates to assess the dye-decolorizing ability of industrial textile dyes. P. sajor-caju PS2001 was also cultivated in solid-state fermentation containing sawdust of Pinus sp. and wheat bran to obtain the enzymatic extract, showing laccase and manganese-peroxidase activity, which was used to test the capacity to degrade the textile dyes. Additional tests of decolorization were performed in liquid cultures. Anthraquinone-type textile dyes proved to be substrates for the enzymatic system of P. sajor-caju PS2001. Cultures in Petri dish plates showed that the anthraquinone dye Reactive Blue 220 can act as a redox mediator for the enzymatic reactions involved in the decolorization process, and enables the azo dye degradation. Reactive Blue 220 and Acid Blue 280 were completely decolorized in 30 min and 60 min, respectively, during the tests with precipitated enzymatic extract, while the azo dyes showed resistance to degradation. Additionally, in submerged cultures with dyes, veratryl alcohol oxidases and lignin peroxidase activities were observed. These results suggest that the strain P. sajor-caju PS2001 has great potential for use in the bioremediation technology of recalcitrant pollutant such as textile effluents.  相似文献   

19.
Reactive azo dyes are considered as one of the most detrimental pollutants from industrial effluents and therefore their biodegradation is receiving constant scientific consideration. A bacterial isolate VS-MH2, originating from dye contaminated sites of Gujarat, India, was exploited for its ability to degrade a synthetic dye mixture (SDM) (comprising of four azo reactive dyes) under static conditions. The identification of the isolate by 16S rRNA gene sequencing revealed it to be Comamonas sp. The biodegradation of the SDM was analyzed by UV-vis spectroscopy, IR spectroscopy and GC-MS analysis. The isolate showed high metabolic activity towards SDM and degraded it completely (100 mg L(-1)) within 30 h at pH 7 and 35 °C. Simulated microcosm studies in the presence and absence of indigenous microflora confirmed the ability of Comamonas sp. VS-MH2 for dye degradation and to colonize the soil. This is the first investigation reporting the degradation of SDM by Comamonas sp. under simulated soil microcosms.  相似文献   

20.
The feasibility of thermophilic (55 °C) anaerobic treatment applied to colour removal of a triazine contained reactive azo dye was investigated in two 0.53 l expanded granular sludge blanket (EGSB) reactors in parallel at a hydraulic retention time (HRT) of 10 h. Generally, this group of azo dyes shows the lowest decolourisation rates during mesophilic anaerobic treatment. The impact of the redox mediator addition on colour removal rates was also evaluated. Reactive Red 2 (RR2) and anthraquinone-2,6-disulfonate (AQDS) were selected as model compounds for azo dye and redox mediator, respectively. The reactors achieved excellent colour removal efficiencies with a high stability, even when high loading rates of RR2 were applied (2.7 g RR2 l−1 per day). Although AQDS addition at catalytic concentrations improved the decolourisation rates, the impact of AQDS on colour removal was less apparent than expected. Results show that the AQDS-free reactor R2 achieved excellent colour removal rates with efficiencies around 91%, compared with the efficiencies around 95% for the AQDS-supplied reactor R1. Batch experiments confirmed that the decolourisation rates were co-substrate dependent, in which the volatile fatty acids (VFA) mixture was the least efficient co-substrate. The highest decolourisation rate was achieved in the presence of either hydrogen or formate, although the presence of glucose had a significant impact on the colour removal rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号