首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Reconstitution of a bacterial Na+/H+ antiporter   总被引:1,自引:0,他引:1  
Membrane proteins from alkalophilic Bacillus firmus RAB were extracted with octylglucoside, reconstituted into liposomes made from alkalophile lipids. The proteoliposomes were loaded with 22Na+. Imposition of a valinomycin-mediated potassium diffusion potential, positive out, resulted in very rapid efflux of radioactive Na+ against its electrochemical gradient. That the Na+ efflux was mediated by the electrogenic Na+/H+ antiporter is indicated by the following characteristics that had been established for the porter in previous studies: dependence upon an electrical potential; pH sensitivity, with activity dependent upon an alkaline pH; inhibition by Li+; and an apparent concentration dependence upon Na+ that correlated well with measurements in cells and membrane vesicles.  相似文献   

2.
During net Mg2+ efflux from Mg2+-preloaded chicken erythrocytes, which occurs via Na+/Mg2+ antiport, 28Mg2+ is taken up intracellularly. Km of 28Mg2+ influx amounted to 1 mM. In Na+-free medium Vmax of 28Mg2+ influx was increased and Km was reduced to 0.2 mM. 28Mg2+ influx was noncompetitively inhibited by amiloride as was found for Na+/Mg2+ antiport. The results indicate that, extracellularly, Mg2+ can compete with Na+ for common binding sites of the Na+/Mg2+ antiporter, resulting in 28Mg2+-24Mg2+ exchange. The rate of Mg2+ exchange depends on extracellular Na+ and on the rate of net Mg2+ efflux.  相似文献   

3.
Kinetic and molecular properties of the Ca2+/H+ antiporter in the vacuolar membrane of mung bean hypocotyls were examined and compared with Ca2+-ATPase. Ca2+ transport activities of both transporters were assayed separately by the filtration method using vacuolar membrane vesicles and 45Ca2+. Ca2+ uptake in the presence of ATP and bafilomycin A1, namely Ca2+-ATPase, showed a relatively low Vmax (6 nmol.min-1.mg-1 protein) and a low Km for Ca2+. The Ca2+/H+ antiporter activity driven by H+-pyrophosphatase showed a high Vmax (25 nmol.min-1.mg-1) and a relatively high Km for Ca2+. The cDNA for mung bean Ca2+/H+ antiporter (VCAX1) codes for a 444 amino-acid polypeptide. Two peptide-specific antibodies of the antiporter clearly reacted with a 42-kDa protein from vacuolar membranes and a cell lysate from a Escherichia coli transformant in which VCAX1 was expressed. These observations directly demonstrate that a low-affinity, high-capacity Ca2+/H+ antiporter and a high-affinity Ca2+-ATPase coexist in the vacuolar membrane. It is likely that the Ca2+/H+ antiporter removes excess Ca2+ in the cytosol to lower the Ca2+ concentration to micromolar levels after stimuli have increased the cytosolic Ca2+ level, the Ca2+-ATPase then acts to lower the cytosolic Ca2+ level further.  相似文献   

4.
Cardiac Ca2+ channels were solubilized and reconstituted into liposomes, and Ca2+ efflux from the proteoliposomes was measured with the fluorescent dye fura-2. The Ca2+ efflux, induced by K+ depolarization, was sensitive to Ca2+ channel modulators such as nifedipine, D-600 and Bay K 8644, and was dependent on the membrane potential. Furthermore, the efflux was increased by phosphorylation of proteoliposomes with cAMP-dependent protein kinase. These results suggest that the reconstituted cardiac Ca2+ channels retain the voltage-dependent gating properties, pharmacological sensitivities and modulation by phosphorylation.  相似文献   

5.
(Na+ + K+)-ATPase was isolated from the grey matter of brain and incorporated into liposomes. Most of the reconstituted enzyme was oriented 'inside-out' with respect to its in vivo orientation and externally added ATP promoted Na+ uptake that was inhibitable by internally trapped ouabain. Using the same proteoliposomes, an Na+ - Ca2+ exchange system was observed as indicated by the following pieces of evidence. (1) The Na+ gradient provided the only readily apparent driving force for acceleration of Ca2+ accumulation into proteoliposomes. (2) The antiporter was specific for Ca2+, high Mg2+ excess did not inhibit Ca2+ antiport. (3) The Na+ efflux was dependent on the extravesicular Ca2+ concentration. (4) The Na+ efflux was not inhibited by tetrodotoxin. The demonstrated Na+ - Ca2+ exchange could not be related to (Na+ + K+)-ATPase protein, since it was not purified with (Na+ + K+)-ATPase, as followed from transport studies with liposomes containing (Na+ + K+)-ATPase of different specific activity. The results strongly indicate that plasma membranes isolated from the grey matter of brain contain an Na+ - Ca2+ exchange system and that the proteoliposomes are suitable for further purification of the carrier molecule.  相似文献   

6.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

7.
L-Leucine is cotransported with H+ in the plasma membrane of Chang liver cells (Mitsumoto, Y. et al. (1986) J. Biol. Chem. 261, 4549). The leucine transport system was solubilized from the plasma membrane of the cells with ocytl glucoside and reconstituted in proteoliposomes prepared by a rapid dilution of a mixture of the solubilized proteins, octyl glucoside and liposomes. The proteoliposomes exhibited H(+)-gradient and electrical potential-stimulated leucine uptake. The H(+)-gradient-stimulated leucine uptake could be completely inhibited by carbonyl cyanide p-trifluoro-methoxyphenylhydrazone (FCCP) and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH). The stimulatory effect of H+ gradient on leucine uptake was shown to be mainly due to decrease of the Km, but not to change of the Vmax, of the transport kinetics. These results suggest that the leucine-H+ cotransporter is solubilized and reconstituted into proteoliposomes.  相似文献   

8.
Purified myometrium cells plasma membrane Ca2+, Mg(2+)-ATPase was reconstitute in liposomes in functionally active state by the method of cholate dialysis: it showed ATP-hydrolase activity increased by 0.8 microM A23187 average 4 times and it showed Mg2+, ATP-dependent Ca(2+)-transporting activity. Reconstituted system transported Ca2+ at an initial rate of 114.4 +/- 16.3 nmol.min-1.mg-1 with the stoichiometry Ca2+: ATP = 1: (3.2-3.7). Calmodulin increased by 30% the initial rate of Ca(2+)-accumulation by the proteoliposomes with reconstituted Ca2+, Mg(2+)-ATPase; 0.1 mM orthovanadate decreased by 80% Ca(2+)-accumulation by this system. Ca2+, Mg(2+)-ATPase reconstituted in liposomes is just Ca(2+)-transporting ATPase of the plasma membrane. Obtained enzyme preparate can be utilised for study of the properties of this important energy-dependent Ca(2+)-transporting system of smooth muscle cell.  相似文献   

9.
During reconstitution of pig heart mitochondrial H+-ATPase in soybean phospholipid liposomes by the cholate dialysis method, Mg2+ greatly enhances 32Pi-ATP exchange activity, ATPase activity and the sensitivity to oligomycin of the reconstituted enzyme complex. The effect of Mg2+ on the fluidity of the reconstituted proteoliposomes was measured by means of a fluoursecent probe. 1-anilinonaphthalene ?e-8-sulfonate, and spin-label probes, 5-nitroxide stearate, 12-nitroxide stearate and 16-nitroxide stearate. A difference in fluidity seems to be localized near the polar faces of the lipid bilayers of the reconstituted proteolipsomes. Fluidity was less in the presence of Mg2+ than it is absence. The conformations of the Mg2+-containing proteoliposomes was higher. We postulate that Mg2+ may play a role in altering the fluidity of the proteoliposomes, which would favor the formation of a conformation of the reconstituted H+-ATPase with higher activity.  相似文献   

10.
Calcium (Ca2+) is sequestered into vacuoles of oat root cells through a H+/Ca2+ antiport system that is driven by the proton-motive force of the tonoplast H+-translocating ATPase. The antiport has been characterized directly by imposing a pH gradient in tonoplast-enriched vesicles. The pH gradient was imposed by diluting K+-loaded vesicles into a K+-free medium. Nigericin induced a K+/H+ exchange resulting in a pH gradient of 2 (acid inside). The pH gradient was capable of driving 45Ca2+ accumulation. Ca2+ uptake was tightly coupled to H+ loss as increasing Ca2+ levels progressively dissipated the steady state pH gradient. Ca2+ uptake displayed saturation kinetics with a Km(app) for Ca2+ of 10 microM. The relative affinity of the antiporter for transport of divalent cations was Ca2+ greater than Sr2+ greater than Ba2+ greater than Mg2+. La3+ or Mn2+ blocked Ca2+ uptake possibly by occupying the Ca2+-binding site. Ruthenium red (I50 = 40 microM) and N,N'-dicyclohexylcarbodiimide (I50 = 3 microM) specifically inhibited the H+/Ca2+ antiporter. When driven by pH jumps, the H+/Ca2+ exchange generated a membrane potential, interior positive, as shown by [14C]SCN accumulation. Furthermore, Ca2+ uptake was stimulated by an imposed negative membrane potential. The results support a simple model of one Ca2+ taken up per H+ lost. The exchange transport can be reversed, as a Ca2+ gradient (Ca2+in greater than Ca2+out) was effective in forming a pH gradient (acid inside). We suggest that the H+/Ca2+ exchange normally transports Ca2+ into the vacuole; however, under certain conditions, Ca2+ may be released into the cytoplasm via this antiporter.  相似文献   

11.
The Na+/H+ antiporter NhaA is the main Na+ extrusion system in E. coli. Using direct current measurements combined with a solid supported membrane (SSM), we obtained electrical data of the function of NhaA purified and reconstituted in liposomes. These measurements demonstrate NhaA's electrogenicity, its specificity for Li+ and Na+ and its pronounced pH dependence in the range pH 6.5-8.5. The mutant G338S, in contrast, presents a pH independent profile, as reported previously. A complete right-side-out orientation of the NhaA antiporter within the proteoliposomal membrane was determined using a NhaA-specific antibody based ELISA assay. This allowed for the first time the investigation of NhaA in the passive downhill uptake mode corresponding to the transport of Na+ from the periplasmic to the cytoplasmic side of the membrane. In this mode, the transporter has kinetic properties differing significantly from those of the previously investigated efflux mode. The apparent Km values were 11 mM for Na+ and 7.3 mM for Li+ at basic pH and 180 mM for Na+ and 50 mM for Li+ at neutral pH. The data demonstrate that in the passive downhill uptake mode pH regulation of the carrier affects both apparent Km as well as turnover (Vmax).  相似文献   

12.
Ca2+ was accumulated in inside-out membrane vesicles of Bacillus subtilis when NADH was used as an energy source. A delta pH (acid interior) could also drive Ca2+ accumulation in the membrane vesicles and the accumulation was inhibited by carbonylcyanide p-trifluoromethoxyphenylhydrazone and nigericin plus K+. These results indicate the presence of a Ca2+/H+ antiporter (exchanger) in this organism. The antiporter was isolated and purified to homogeneity from the membrane proteins by chromatography on hydroxyapatite, diethylaminoethyl(DEAE)-Toyopearl 650 M and butyl-Toyopearl 650 M. The purified antiporter has a molecular mass of about 45 000 daltons and an isoelectric point of 5.0. The fluorescence quenching of a cyanine dye (3,3'-dipropylthiodicarbocyanine iodide [diS-C3-(5)] during Ca2+ accumulation in proteoliposomes by the purified antiporter showed the generation of a membrane potential (interior negative) suggesting a H+/Ca2+ stoichiometry above 2 in the transport. This was also supported by the result that the K+-diffusion potential, interior positive, stimulated the Ca2+ uptake in the presence of a delta pH. The apparent Km for Ca2+ of the antiporter was about 40 microM and La3+ inhibited the transport. Amino acid analysis of the purified antiporter indicated the presence of large amounts of glutamic and aspartic acids and small amounts of histidine, lysine and arginine. This is consistent with the low isoelectric point (about 5.0) of the protein.  相似文献   

13.
A new nonionic detergent, heptylthioglucoside, was synthesized and found to be more soluble than octylthioglucoside in water at low temperatures. Use of this detergent for solubilization and reconstitution of membrane proteins of Escherichia coli was examined. Heptylthioglucoside was as effective as octylthioglucoside and octylglucoside in solubilizing membrane proteins, and by the heptylthioglucoside-dilution procedure the H+-translocating ATPase (F1F0) and melibiose carrier could easily be reconstituted into liposomes. It is concluded that heptylthioglucoside is very useful in studies on membrane proteins.  相似文献   

14.
ZitB is a member of the cation diffusion facilitator (CDF) family that mediates efflux of zinc across the plasma membrane of Escherichia coli. We describe the first kinetic study of the purified and reconstituted ZitB by stopped-flow measurements of transmembrane fluxes of metal ions using a metal-sensitive fluorescent indicator encapsulated in proteoliposomes. Metal ion filling experiments showed that the initial rate of Zn2+ influx was a linear function of the molar ratio of ZitB to lipid and was related to the concentration of Zn2+ or Cd2+ by a hyperbola with a Michaelis-Menten constant (K(m)) of 104.9 +/- 5.4 microm and 90.1 +/- 3.7 microm, respectively. Depletion of proton stalled Cd2+ transport down its diffusion gradient, whereas tetraethylammonium ion substitution for K+ did not affect Cd2+ transport, indicating that Cd2+ transport is coupled to H+ rather than to K+. H+ transport was inferred by the H+ dependence of Cd2+ transport, showing a hyperbolic relationship with a Km of 19.9 nm for H+. Applying H+ diffusion gradients across the membrane caused Cd2+ fluxes both into and out of proteoliposomes against the imposed H(+) gradients. Likewise, applying outwardly oriented membrane electrical potential resulted in Cd2+ efflux, demonstrating the electrogenic effect of ZitB transport. Taken together, these results indicate that ZitB is an antiporter catalyzing the obligatory exchange of Zn2+ or Cd2+ for H+. The exchange stoichiometry of metal ion for proton is likely to be 1:1.  相似文献   

15.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

16.
The H(+)-ATPase of the plasma membrane from Saccharomyces cerevisiae has been isolated, purified and reconstituted into asolectin liposomes. The kinetics of ATP hydrolysis have been compared for the H(+)-ATPase in the plasma membrane, in a protein/lipid/detergent micelle (isolated enzyme) and in asolectin proteoliposomes (reconstituted enzyme). In all three cases the kinetics of ATP hydrolysis can be described by Michaelis-Menten kinetics with Km = 0.2 mM MgATP (plasma membranes), Km = 2.4 mM MgATP (isolated enzyme) and Km = 0.2 mM MgATP (reconstituted enzyme). However, the maximal turnover decreases only by a factor of two during isolation of the enzyme and does not change during reconstitution; the activation of the H(+)-ATPase by free Mg2+ is also only slightly influenced by the detergent. The dissociation constant of the enzyme-Mg2+ complex Ka, does not alter during isolation and the dissociation constant of the enzyme-substrate complex, Ks, increases from Ks = 30 microM (plasma membranes) to Ks = 90 microM (isolated enzyme). ATP binding to the H(+)-ATPase ('single turnover' conditions) for the isolated and the reconstituted enzyme resulted in both cases in a second-order rate constant k1 = 2.6 x 10(4) M-1.s-1. From these observations it is concluded that the detergent used (Zwittergent TM 3-14) interacts reversibly with the H(+)-ATPase and that practically all H(+)-ATPase molecules are reconstituted into the liposomes with the ATP-binding site being directed to the outside of the vesicle.  相似文献   

17.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form.  相似文献   

18.
The Ca2+, Mg2(+)-ATPase of the myometrium sarcolemma purified by the method of affinity chromatography on calmodulin sepharose is reconstituted into azolectin liposomes in the functionally active form by means of cholate dialysis. The ATPase-dependent accumulation of 45Ca is shown on the obtained model system. It makes up 95% of the total accumulation and may decrease to 43% under the effect of 0.8 microM A23187. Ca2+, Mg2(+)-ATPase reconstituted into azolectin liposomes is in the high affinity to Ca2+; Km for Ca2+ is equal to 0.88 +/- 0.22 microM, calmodulin practically does not change it. The highest activity of the reconstituted enzyme is observed at pH 7.0, temperature 50 degrees C, the Mg-ATP concentration 1-2 mM. The Km for substrate is 0.45 +/- 0.02 mM.  相似文献   

19.
The effects of gonadal steroid hormone, 17beta-estradiol (E2), in vitro on rat brain mitochondria Ca2+ movement were investigated. Intrasynaptosomal mitochondria Ca2+ uptake via an energy-driven Ca2+ uniporter have Km = 112.73 +/- 7.3 micromol x l(-1) and Vmax = 21.97 +/- 1.7 nmol 45Ca2+ mg(-1). Ca2+ release trough a Na+/Ca2+ antiporter was measured with a Km for Na+ of 43.7 +/- 2.6 mmol x l(-1), and Vmax of 1.5 +/- 0.3 nmol 45Ca2+ mg(-1). Addition of estradiol in preincubation mixture did not affect the uptake of Ca2+ mediated by the ruthenium red-sensitive uniporter, while it produced biphasic effect on Na-dependent Ca2+ efflux. Estradiol at concentrations up to 1 nmol x l(-1) decreased the efflux significantly (63% inhibition with respect to the control), and at concentrations above 10 nmol x l(-1) increased it exponentially. The maximum inhibiting concentration of estradiol (0.5 nmol x l(-1)) increased the affinity of the uniporter (Km reduced by about 30%), without affecting significantly the capacity (Vmax) for Na+. The results presented suggest that estradiol inhibits Na-dependent Ca2+ efflux from mitochondria and acts on mitochondrial retention of Ca2+, which may modulate mitochondrial and consequently synaptosomal content of Ca2+, and in this way exerts its role in the homeostasis of calcium in nerve terminals.  相似文献   

20.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号