首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
Cereal starch production forms the basis of subsistence for much of the world's human and domesticated animal populations. Starch concentration and composition in the maize (Zea mays ssp mays) kernel are complex traits controlled by many genes. In this study, an association approach was used to evaluate six maize candidate genes involved in kernel starch biosynthesis: amylose extender1 (ae1), brittle endosperm2 (bt2), shrunken1 (sh1), sh2, sugary1, and waxy1. Major kernel composition traits, such as protein, oil, and starch concentration, were assessed as well as important starch composition quality traits, including pasting properties and amylose levels. Overall, bt2, sh1, and sh2 showed significant associations for kernel composition traits, whereas ae1 and sh2 showed significant associations for starch pasting properties. ae1 and sh1 both associated with amylose levels. Additionally, haplotype analysis of sh2 suggested this gene is involved in starch viscosity properties and amylose content. Despite starch concentration being only moderately heritable for this particular panel of diverse maize inbreds, high resolution was achieved when evaluating these starch candidate genes, and diverse alleles for breeding and further molecular analysis were identified.  相似文献   

2.
Shannon JC  Pien FM  Liu KC 《Plant physiology》1996,110(3):835-843
As part of an in vivo study of carbohydrate metabolism during development of Zea mays L. kernels, quantities of nucleotides and nucleotide sugars were measured in endosperm extracts from normal, the single-mutant genotypes shrunken-1 (sh1), shrunken-2 (sh2), and brittle-1 (btl}, and the multiple-mutant genotypes sh1bt1, sh2bt1, and sh1sh2bt1. Results showed that bt1 kernels accumulated more than 13 times as much adenosine 5[prime] diphospho-glucose (ADP-Glc) as normal kernels. Activity of starch synthase in bt1 endosperm was equal to that in endosperm extracts from normal kernels. Thus the ADP-Glc accumulation in bt1 endosperm cells was not due to a deficiency in starch synthase. ADP-Glc content in extracts of sh1bt1 endosperms was similar to that in bt1, but in extracts of the sh2bt1 mutant kernels ADP-Glc content was much reduced compared to bt1 (about 3 times higher than that in normal). Endosperm extracts from sh1sh2bt1, kernels that are deficient in both ADP-Glc pyrophosphorylase (AGPase) and sucrose synthase, had quantities of ADP-Glc much lower than in normal kernels. These results clearly indicate that AGPase is the predominant enzyme responsible for the in vivo synthesis of ADP-Glc in bt1 mutant kernels, but Suc synthase may also contribute to the synthesis of ADP-Glc in kernels deficient in AGPase.  相似文献   

3.
In maize, three isoforms of starch-branching enzyme, SBEI, SBEIIa, and SBEIIb, are encoded by the Sbe1a, Sbe2a, and Amylose extender (Ae) genes, respectively. The objective of this research was to explore the effects of null mutations in the Sbe1a and Ae genes alone and in combination in wx background on kernel characteristics and on the morphology and physical behavior of endosperm starch granules. Differences in kernel morphology and weight, starch accumulation, starch granule size and size distribution, starch microstructure, and thermal properties were observed between the ae wx and sbe1a ae wx plants but not between the sbe1a wx mutants when compared to wx. Starch from sbe1a ae wx plants exhibited a larger granule size with a wider gelatinization temperature range and a lower endotherm enthalpy than ae wx. Microscopy shows weaker iodine staining in sbe1a ae wx starch granules. X-ray diffraction revealed A-type crystallinity in wx and sbe1a wx starches and B-type in sbe1a ae wx and ae wx. This study suggests that, while the SBEIIb isoform plays a dominant role in maize endosperm starch synthesis, SBEI also plays a role, which is only observable in the presence of the ae mutation.  相似文献   

4.
A maize genetic linkage map was generated using SSR and SNP markers in a F7:8 recombinant inbred line (RIL) population derived from a cross of waxy corn (KW7) and dent corn (Mo17). A total of 465 markers, including 459 SSR and 6 SNP markers, were assigned to 10 linkage groups which spanned 2,656.5 cM with an average genetic distance between markers of 5.7 cM, and the number of loci per linkage group ranged from 39 to 55. The SSR (85.4%) and SNP (83.3%) markers showed Mendelian segregation ratios in the RIL population at a 5% significance threshold. In linkage analysis of six SNP loci associated with kernel starch synthesis genes (ae1, bt2, sh1, sh2, su1, and wx1), all six loci were successfully mapped and are closely linked with SSR markers in chromosomes 3 (sh2), 4 (su1 and bt2), 5 (ae1), and 9 (sh1 and wx1). The SSR markers linked with genes in starch synthesis may be utilized in marker assisted breeding programs. The resulting genetic map will be useful in dissection of quantitative traits and the identification of superior QTLs from the waxy hybrid corn. Additionally, these data support further genetic analysis and development of maize breeding programs.  相似文献   

5.
Measuring genetic diversity in populations of a crop species is very important for understanding the genetic structure of and subsequently improving the crop species by genetic manipulation. Single-nucleotide amplified polymorphisms (SNAPs) among and within maize populations of waxy, dent, and sweet corns at 25 single-nucleotide polymorphism (SNP) sites in 6 kernel starch-synthesis genes (sh2, bt2, su1, ae1, wx1, and sh1) were determined. Because of the intensive selection of some favorable alleles in starch-synthesis genes during the breeding process, and the resultant strong linkage disequilibrium (LD), the number of haplotypes in each population was far less than expected. Subsequent phenetic clustering analysis with the SNAPs indicated that the dent, waxy, and sweet corns formed distinct subclusters, except in a few incidences. LD was surveyed among SNAPs of intragenic, intergenic, and intrachromosomal SNPs in whole and subpopulations, which revealed that some SNAPs showed high LD with many other SNAPs, but some SNAPs showed low or no significant LD with others, depending on the subpopulation, indicating that these starch genes have undergone different selection in each subpopulation during the breeding process. Because the starch synthesis genes used in this study are important in maize breeding, the genetic diversity, LD, and accessions having rare SNAP alleles might be valuable in maize improvement programs.  相似文献   

6.
ADPglucose, the essential substrate for starch synthesis, is synthesized in maize by a pathway involving at least invertases, sucrose synthase, and ADPglucose pyrophosphorylase, as shown by the starch-deficient mutants, mn1, sh1, and bt2 or sh2, respectively. To improve understanding of the relationship between early grain-filling traits and carbohydrate composition in mature grain, QTLs linked to soluble invertase, sucrose synthase, and ADPglucose pyrophosphorylase activities and to starch, sucrose, fructose, and glucose concentrations were investigated. In order to take into account the specific time-course of each enzyme activity during grain filling, sampling was carried out at three periods (15, 25, and 35 d after pollination) on 100 lines from a recombinant inbred family, grown in the field. The MQTL method associated with QTL interaction analysis revealed numerous QTLs for all traits, but only one QTL was consistently observed at the three sampling periods. Some chromosome zones were heavily labelled, forming clusters of QTLs. Numerous possible candidate genes of the starch synthetic pathway co-located with QTLs. Four QTLs were found close to the locus Sh1 (bin 9.01) coding for the sucrose synthase. In order to confirm the importance of this locus, the CAPS polymorphism of the Sh1 gene was analysed in 45 genetically unrelated maize lines from various geographical origins. The DNA polymorphism was significantly associated with phenotypic traits related to grain filling (starch and amylose content, grain matter, and ADPglucose pyrophosphorylase activity at 35 DAP). Thus, the Sh1 locus could provide a physiologically pertinent marker for maize selection.  相似文献   

7.
8.
9.
Structural features of the maize sus1 gene and protein.   总被引:10,自引:5,他引:5       下载免费PDF全文
Genomic clones, cDNA clones, and protein of the maize (Zea mays L.) Suc synthase1 (sus1) gene were isolated and sequenced. Termini (5' and 3') of the transcribed unit were identified. The SUS1 protein was purified from tissue culture cells as a phosphorylated protein. The overall structure of sus1 is virtually identical with that of the paralogous gene, shrunken1 (sh1); however, the last intron of sh1 is missing in sus1. This intron bears much sequence similarity with the adjacent exon, suggesting that the intron arose from an internal duplication. Although the placement of the other 14 introns is identical in both genes, the introns exhibit markedly greater differences in size and sequence relative to that shown by the exons. An explanation for the differential rate of divergence of exons and introns is selection pressure for gene function. Additionally, comparisons of coding regions of plant sucrose synthases show that sh1-like and sus1-like genes can be found in all monocots so far analyzed. These latter observations point to an important role played by both genes in this group of plants.  相似文献   

10.
In cereals, starch is synthesized in endosperm cells, which have a ploidy level of three. By studying the allelic dosage of mutants affecting starch formation in maize (Zea mays L.) kernels, we determined the effect of down-regulated enzyme activity on starch accumulation and the activity of associated enzymes of carbohydrate metabolism. We found a direct relationship between the amount of starch produced in the endosperm and the gene dosage of amylose extender-1, brittle-2, shrunken1, and sugary-1 mutant alleles. Changes in starch content were found to be caused by changes in the duration as well as the rate of starch synthesis, depending on the mutant. Branching enzyme, ADP-glucose pyrophosphorylase, and sucrose synthase activities were linearly reduced in endosperm containing increasing dosages of amylose extender-1, brittle-2, and shrunken-1 alleles, respectively. De-branching enzyme activity declined only in the presence of two or three copies of sugary-1. No enzyme-dosage relationship occurred with the dull1 mutant allele. All mutants except sugary-1 displayed large increases (approximately 2- to 5-fold) in activity among various enzymes unrelated to the structural gene. This occurred in homozygous recessive genotypes, as did elevated concentrations of soluble sugars, and differed in magnitude and distribution among enzymes according to the particular mutation.  相似文献   

11.
The conversion of maize (corn) kernels to bio-ethanol is an energy-intensive process involving many stages. One step typically required is the liquefaction of the ground kernel to enable enzyme hydrolysation of the starch to glucose. The enzyme blends STARGEN? (Genencor) are capable of hydrolysing starch granules without liquefaction, reducing energy inputs and increasing efficiency. Studies were conducted on maize starch mutants amylose extender 1 (ae1), dull 1 (du1) and waxy 1 (wx1) in the inbred line Oh43 to determine whether different maize starches affected hydrolysation rates by STARGEN? 001 and STARGEN? 002. All mutants contained similar proportions of starch in the kernel but varied in the amylose to amylopectin ratio. Ground maize kernels were incubated with STARGEN? 001 and viewed using scanning electron microscopy to examine the hydrolysis action of STARGEN? 001 on the starch granules. The ae1 mutant exhibited noticeably less enzymic hydrolysis action, on the granules visualised, than wx1 and background line Oh43. Kernels were batch-fermented with STARGEN? 001 and STARGEN? 002. The ae1 mutant exhibited a 50% lower ethanol yield compared to the wx1 mutant and background line. A final study compared hydrolysation rates of STARGEN? 001 and STARGEN? 002 on purified maize starch, amylopectin and amylose. Though almost twice the amylopectin was hydrolysed using STARGEN? 002 than STARGEN? 001 in this trial, fermentations using STARGEN? 002 resulted in lower ethanol yields than fermentations using STARGEN? 001. Both STARGEN? enzyme blends were more suitable for the fermentation of high amylopectin maize starches than high amylose starches.  相似文献   

12.
This study characterized genetic interactions between the maize (Zea mays) genes dull1 (du1), encoding starch synthase III (SSIII), and isa2, encoding a noncatalytic subunit of heteromeric isoamylase-type starch-debranching enzyme (ISA1/ISA2 heteromer). Mutants lacking ISA2 still possess the ISA1 homomeric enzyme. Eight du1(-) mutations were characterized, and structural changes in amylopectin resulting from each were measured. In every instance, the same complex pattern of alterations in discontinuous spans of chain lengths was observed, which cannot be explained solely by a discrete range of substrates preferred by SSIII. Homozygous double mutants were constructed containing the null mutation isa2-339 and either du1-Ref, encoding a truncated SSIII protein lacking the catalytic domain, or the null allele du1-R4059. In contrast to the single mutant parents, double mutant endosperms affected in both SSIII and ISA2 were starch deficient and accumulated phytoglycogen. This phenotype was previously observed only in maize sugary1 mutants impaired for the catalytic subunit ISA1. ISA1 homomeric enzyme complexes assembled in both double mutants and were enzymatically active in vitro. Thus, SSIII is required for normal starch crystallization and the prevention of phytoglycogen accumulation when the only isoamylase-type debranching activity present is ISA1 homomer, but not in the wild-type condition, when both ISA1 homomer and ISA1/ISA2 heteromer are present. Previous genetic and biochemical analyses showed that SSIII also is required for normal glucan accumulation when the only isoamylase-type debranching enzyme activity present is ISA1/ISA heteromer. These data indicate that isoamylase-type debranching enzyme and SSIII work in a coordinated fashion to repress phytoglycogen accumulation.  相似文献   

13.
Genetic mapping of the Isaac-CACTA transposon in maize   总被引:1,自引:0,他引:1  
We constructed a genetic linkage map with Isaac-TD, SSR, and SNAP markers in a RIL population which had been derived from a cross of waxy corn (KW7) and dent corn (Mo17). A total of 368 markers, including 241 Isaac-TD, 121 SSR, and 6 SNAP markers, were assigned to 10 linkage groups, encompassing 1687.0 cM, with an average genetic distance of 4.6 cM between markers. SSR markers were utilized as chromosome anchors, in order to assign the Isaac-TD markers to the chromosomes, and the number of markers in each of the linkage groups ranged between 22 and 49. The majority of the Isaac-TD markers were determined to have been distributed throughout the ten maize chromosomes. In linkage analysis of the Isaac-TD markers with genes of agronomic interest, six genes related with maize kernel starch biosynthesis, ae1, bt2, sh1, sh2, su1, and wx1, were analyzed and shown that they were closely linked with either the Isaac-TD or SSR markers on chromosomes of 3, 4, 5, and 9. We observed and mapped segregation-distorted markers on chromosomes 1, 5, 6, 7, 8, and 10, where these markers were clustered. The Isaac-TD or SSR markers which were closely linked with starch synthesis genes may prove useful in marker-assisted breeding programs.  相似文献   

14.
Previous studies indicated that the deficiency of starch-branching enzyme (SBE) Ia in the single mutant sbe1a::Mu (sbe1a) has no impact on endosperm starch structure, whereas the deficiency of SBEIIb in the ae mutant is well known to reduce the branching of starch. We hypothesized that in maize (Zea mays) endosperm, the function of SBEIIb is predominant to that of SBEIa, and SBEIa would have an observable effect only on amylopectin structure in the absence of SBEIIb. To test this hypothesis, the mutant sbe1a was introgressed into lines containing either wx (lacking the granule-bound starch synthase GBSSI) or ae wx (lacking both SBEIIb and GBSSI) in the W64A background. Both western blotting and zymogram analysis confirmed the SBEIa deficiency in sbe1a wx and sbe1a ae wx, and the SBEIIb deficiency in ae wx and sbe1a ae wx. Using zymogram analysis, no pleiotropic effects of sbe1a genes on SBEIIa, starch synthase, or starch-debranching enzyme isoforms were observed. High-performance size exclusion chromatography analysis shows that the chain-length profiles of amylopectin as well as beta-limit dextrin were indistinguishable between wx and sbe1a wx, whereas significant differences for both were observed between ae wx and sbe1a ae wx, suggesting an effect of SBEIa on amylopectin biosynthesis that is observable only in the absence of SBEIIb. The amylopectin branch density and the average number of branches per cluster were both higher in endosperm starch from sbe1a ae wx than from ae wx. These results indicate possible functional interactions between SBE isoforms that may involve enzymatic inhibition. Both the cluster repeat distance and the distance between branch points on the short intracluster chains were similar for all genotypes however, suggesting a similar pattern of individual SBE isoforms in cluster initiation and the determination of branch point location.  相似文献   

15.
The central carbohydrate metabolism provides the precursors for the syntheses of various storage products in seeds. While the underlying biochemical map is well established, little is known about the organization and flexibility of carbohydrate metabolic fluxes in the face of changing biosynthetic demands or other perturbations. This question was addressed in developing kernels of maize (Zea mays L.), a model system for the study of starch and sugar metabolism. 13C-labeling experiments were carried out with inbred lines, heterotic hybrids, and starch-deficient mutants that were selected to cover a wide range of performances and kernel phenotypes. In total, 46 labeling experiments were carried out using either [U-13C6]glucose or [U-13C12]sucrose and up to three stages of kernel development. Carbohydrate flux distributions were estimated based on glucose isotopologue abundances, which were determined in hydrolysates of starch by using quantitative 13C-NMR and GC-MS. Similar labeling patterns in all samples indicated robustness of carbohydrate fluxes in maize endosperm, and fluxes were rather stable in response to glucose or sucrose feeding and during development. A lack of ADP-glucose pyrophosphorylase in the bt2 and sh2 mutants triggered significantly increased hexose cycling. In contrast, other mutations with similar kernel phenotypes had no effect. Thus, the distribution of carbohydrate fluxes is stable and not determined by sink strength in maize kernels.  相似文献   

16.
17.
In maize, two paralogous genes, Sh1 and Sus1, encode two biochemically similar isozymes of sucrose synthase, SS1 and SS2, respectively. Previous studies have attributed the mild starch deficiency of the shrunken1 (sh1) endosperm to the loss of the SS1 isozyme in the mutant. Here we describe the first mutation in the sucrose synthase1 (Sus1) gene, sus1-1, and the isolation of a double recessive genotype, sh1 sus1-1. Combined data from diverse studies, including Northern and Western analyses, RT-PCR and genomic PCR, cloning and sequencing data for the 3′ region, show that the mutant sus1-1 gene has a complex pattern of expression, albeit at much reduced levels as compared to the Sus1 gene. Endosperm sucrose synthase activity in sh1 sus1-1 was barely 0.5% of the total activity in the Sh1 Sus1 genotype. Significantly, comparative analyses of Sh1 Sus1, sh1 Sus1 and sh1 sus1-1 genotypes have, for the first time, allowed us to dissect the relative contributions of each isozyme to endosperm development. Starch contents in endosperm of the three related genotypes were 100, 78 and 53%, respectively. Anatomical analyses, which confirmed the previously described early cell degeneration phenotype unique to the sh1 Sus1 endosperm, revealed no detectable difference between the two sh1 genotypes. We conclude that the SS1 isozyme plays the dominant role in providing the substrate for cellulose biosynthesis, whereas the SS2 protein is needed mainly for generating precursors for starch biosynthesis.  相似文献   

18.
Summary Zeins, the major endosperm proteins in maize (Zea mays L.), are deficient in the essential amino acids lysine and tryptophan. Some mutant genes, like opaque-2 (o2) and floury-2 (fl2), reduce the levels of A- and B-zeins, thereby improving maize's nutritional value. Other mutants, such as amylose-extender (ae), floury-1 (fl1), soft starch (h), dull-1 (du), shrunken-1 (sh1), sugary-1 (su1), sugary-2 (su2), and waxy (wx), primarily affect starch composition, but also alter zein composition. We undertook this study to examine the effects of some of these mutant genes on A/B-zein composition and to study the interactions of these genes in double-mutant combinations. Endosperm prolamins were extracted from inbred B37, ten near-isogenic single mutants (ae, du, fl1, fl2, h, o2, sh1, su1, su2, and wx), and most double-mutant combinations. Zeins in these extracts were fractionated by reversed-phase highperformance liquid chromatography (RP-HPLC) into 22–24 peaks. Of the resulting 22 major peaks the areas of 16 (per milligram endosperm) were significantly affected by individual mutant genes relative to the zein composition of the normal inbred. In combination these genes exhibited significant epistatic interactions in regulating the expression of individual A/B zeins. Epistatic interactions were judged to be significant when the amount of a peak in a double mutant differed from the averages for the peak in the two respective single mutants. The o2 gene, alone and in combination with other mutant genes, significantly decreased the amounts of many individual zeins. The effect of the o2 gene was the greatest of all the genes examined. Various clustering techniques were used to see if mutant effects could be grouped; among these was principal component analysis, a multivariate statistical technique that analyzes all peak sizes simultaneously. Three-dimensional scatter graphs were constructed based on the first three principal components. For the single mutants, these showed no relationships to gene actions; for the double mutants, however, this technique showed that four single mutants, o2, sh1, su1 and su2, had the greatest effects on zein composition when combined with each other and with the remaining six single mutants.Presented at the XVI International Congress of Genetics, Toronto, Canada, August 20–27, 1988. The mention of firm names or trade products does not imply that they are endorsed or recommended by the USDA over other brands or similar products not mentioned  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号