首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.  相似文献   

2.
It is well established that soil microbial communities change in response to altered land use and land cover, but less is known about the timing of these changes. Understanding temporal patterns in recovering microbial communities is an important part of improving how we assess and manage reconstructed ecosystems. We assessed patterns of community-level microbial diversity and abundance in corn and prairie plots 2 to 4 years after establishment in agricultural fields, using phospholipid fatty acid biomarkers. Principal components analysis of the lipid biomarkers revealed differing composition between corn and prairie soil microbial communities. Despite no changes to the biomass of Gram-positive bacteria and actinomycetes, total biomass, arbuscular mycorrhizal fungi biomass, and Gram-negative bacteria biomass were significantly higher in restored prairie plots, approaching levels found in long-established prairies. These results indicate that plant-associated soil microbes in agricultural soils can shift in less than 2 years after establishment of perennial grasslands.  相似文献   

3.
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function.  相似文献   

4.
The origins of the biological complexity and the factors that regulate the development of community composition, diversity and richness in soil remain largely unknown. To gain a better understanding of how bacterial communities change during soil ecosystem development, their composition and diversity in soils that developed over c. 77 000 years of intermittent aeolian deposition were studied. 16S rRNA gene clone libraries and fatty acid methyl ester (FAME) analyses were used to assess the diversity and composition of the communities. The bacterial community composition changed with soil age, and the overall diversity, richness and evenness of the communities increased as the soil habitat matured. When analysed using a multivariate Bray-Curtis ordination technique, the distribution of ribotypes showed an orderly pattern of bacterial community development that was clearly associated with soil and ecosystem development. Similarly, changes in the composition of the FAMEs across the chronosequence were associated with biomarkers for fungi, actinomycetes and Gram-positive bacteria. The development of the soil ecosystem promoted the development of distinctive microbial communities that were reminiscent of successional processes often evoked to describe change during the development of plant communities in terrestrial ecosystems.  相似文献   

5.
The response of soil microbes to global warming, especially their response to precipitation, remains poorly known. The Tibetan Plateau is very sensitive to climate change. In particular, the northeastern margin of the Tibetan Plateau is an interesting area to test the response of soil microbial communities to precipitation, as there is a distinct gradient in annual precipitation from east to west. We collected soil samples along a precipitation gradient in arid and semi-arid areas of the northeastern Tibetan Plateau. Phospholipid fatty acid (PLFA) technology was used to analyze the microbial community structure and total microbial biomass. With declining precipitation, bacterial biomass decreased significantly, whereas fungal biomass did not show an obvious trend; this result indicates that bacteria are more sensitive to mean annual precipitation (MAP). Overall, the biomass of Gram-negative (G?) bacteria represented up to 82% of the total bacterial biomass. In the high (260–394 mm yr?1) MAP areas, bacterial biomass was mainly concentrated at the surface and decreased with increasing soil depth (0–40 cm). In contrast, in the low (36–260 mm yr?1) MAP areas, bacterial biomass was mainly concentrated in the deep soils. The mean annual precipitation was strongly correlated with soil microbial community in space, with microbial communities in the 0–10-cm soil depth most affected by precipitation. Groundwater may impact microbial communities in the 20–40-cm soil depth of this arid and semiarid region. The clustering of the microbial communities was significantly grouped according to the MAP gradient, revealing that MAP is a major driving force of microbial communities in this arid and semi-arid area. The decline in MAP led to a shift in the structure of the microbial community and an overall reduction in microbial biomass.  相似文献   

6.
The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700 km latitudinal gradient in Europe.Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition.Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.  相似文献   

7.
通过调查岷江干旱河谷两河口、飞虹、撮箕和牟托4个样地优势灌丛及其灌丛间空地的表土土壤物理化学性质和微生物群落组成,探讨植物灌丛群落对土壤微生物群落组成的影响。研究发现不同灌丛种类对土壤微生物群落组成以及土壤物理化学性质并没有显著影响,而同一样地灌丛与空地间的差异却较为显著。灌丛下比空地土壤中具有更高的有机质、养分含量,更高的土壤含水量和更低的容重,而灌丛下相对富集的养分资源是造成灌丛与空地间微生物群落组成差异的主要原因。不同样地影响微生物群落的主要因子存在一定差异,但与氮相关的因子(总氮、有效氮、碳/氮比)对土壤微生物群落着非常重要的影响,特别是对土壤微生物群落总生物量和细菌类群(革兰氏阳性菌、革兰氏阴性菌、细菌等)。虽然不同灌丛和空地下土壤中细菌群落都没有显著地变化,但真菌和菌根真菌却明显的在灌丛下富集。在飞虹和牟托样地,总磷和碳/磷比与真菌类群,主要指真菌和菌根真菌,表现出显著正相关性,这或许反映了真菌类群对于该区域磷循环的重要作用。研究结果揭示了灌丛植被在干旱河谷地区地下生态系统中的重要作用,以及氮、磷这两种养分元素对土壤微生物群落的重要影响。同时,未来对于干旱河谷地区植物-土壤关系的研究应该关注真菌和菌根真菌类群的作用。  相似文献   

8.
Natural ecosystems provide services to agriculture such as pest control, soil nutrients, and key microbial components. These services and others in turn provide essential elements that fuel biomass productivity. Responsible agricultural management and conservation of natural habitats can enhance these ecosystem services. Vineyards are currently driving land‐use changes in many Mediterranean ecosystems. These land‐use changes could have important effects on the supporting ecosystems services related to the soil properties and the microbial communities associated with forests and vineyard soils. Here, we explore soil bacterial and fungal communities present in sclerophyllous forests and organic vineyards from three different wine growing areas in central Chile. We employed terminal restriction fragment length polymorphisms (T‐RFLP) to describe the soil microbial communities inhabiting native forests and vineyards in central Chile. We found that the bacterial community changed between the sampled growing areas; however, the fungal community did not differ. At the local scale, our findings show that fungal communities differed between habitats because fungi species might be more sensitive to land‐use change compared to bacterial species, as bacterial communities did not change between forests and vineyards. We discuss these findings based on the sensitivity of microbial communities to soil properties and land‐use change. Finally, we focus our conclusions on the importance of naturally derived ecosystem services to vineyards.  相似文献   

9.
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) via anthropogenic activities with the added N having potentially important impacts on microbially mediated belowground carbon dynamics. However, a comprehensive understanding of how elevated N availability affects soil microbial processes and community dynamics remains incomplete. The mechanisms responsible for the observed responses are poorly resolved and we do not know if soil microbial communities respond in a similar manner across ecosystems. We collected 28 soils from a broad range of ecosystems in North America, amended soils with inorganic N, and incubated the soils under controlled conditions for 1 year. Consistent across nearly all soils, N addition decreased microbial respiration rates, with an average decrease of 11% over the year‐long incubation, and decreased microbial biomass by 35%. High‐throughput pyrosequencing showed that N addition consistently altered bacterial community composition, increasing the relative abundance of Actinobacteria and Firmicutes, and decreasing the relative abundance of Acidobacteria and Verrucomicrobia. Further, N‐amended soils consistently had lower activities in a broad suite of extracellular enzymes and had decreased temperature sensitivity, suggesting a shift to the preferential decomposition of more labile C pools. The observed trends held across strong gradients in climate and soil characteristics, indicating that the soil microbial responses to N addition are likely controlled by similar wide‐spread mechanisms. Our results support the hypothesis that N addition depresses soil microbial activity by shifting the metabolic capabilities of soil bacterial communities, yielding communities that are less capable of decomposing more recalcitrant soil carbon pools and leading to a potential increase in soil carbon sequestration rates.  相似文献   

10.
土壤微生物群落结构沿海拔梯度的变异是微生物生物地理学分异和群落空间分布的重要内容,然而,热带森林土壤微生物多样性及其群落特征的海拔模式尚不明确。研究海南省尖峰岭自然保护区0—20cm和20—40cm土壤细菌多样性和群落组成沿海拔梯度(400—1410m)的变化及其与环境因子的关系。结果表明:在0—20cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高(峰顶降低)而增加,20—40cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高呈先升高后降低趋势;整体上,变形菌门、放线菌门、酸杆菌门、拟杆菌门、厚壁菌门在0—20cm中占优势,丰度总和占该层细菌总量的88.17%;变形菌门、放线菌门、酸杆菌门、厚壁菌门、绿弯菌门在20—40cm中占优势,丰度总和占该层细菌总量的90.82%;随海拔增加,0—20cm细菌多样性线性减少,20—40cm细菌多样性变化不显著;沿海拔梯度,0—20cm细菌群落组成可分为低(409—1018m),中(1018—1357m)和高(1410m)三个海拔聚集群落,20—40cm细菌群落组成随海拔无显著性变化;两土层细菌多样性与土壤pH显著正相关,土壤细菌群落组成在0...  相似文献   

11.
Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.  相似文献   

12.
全球变暖对陆地生态系统造成一系列生态问题,使这些问题将随着全球平均气温的升高而进一步加剧。海拔梯度变化是研究气候变暖对陆地生态系统影响的一种重要手段。目前为止利用海拔梯度对微生物影响的研究尚未定论,其主要原因是忽略了植被类型的影响。因此,以中亚热带戴云山的3个海拔(1300、1450、1600 m)的黄山松(Pinus taiwanensis)林为研究对象,探究沿海拔梯度的变化,森林土壤微生物生物量和微生物群落结构的响应变化。结果表明:土壤碳氮磷养分(SOC、TN、TP)、微生物生物量氮(MBN)、微生物生物量磷(MBP)和丛枝菌根真菌(AMF)、革兰氏阴性菌(GN)、真菌(Fungi)、总磷脂脂肪酸(T_(PLFA)),细菌∶真菌(F∶B)均随海拔升高显著下降,而革兰氏阳性菌∶革兰氏阴性菌(GP∶GN)随海拔升高呈相反的趋势。冗余分析(RDA)表明,温度(T)和可溶性有机氮(DON)是影响微生物群落结构的最重要的环境因子。研究表明:与1600 m海拔相比,1300 m海拔温度较高,土壤有机质矿化作用较强,土壤速效养分及微生物生物量随之增加,从而提高(Fungi)、细菌(Bacteria)等。因此,未来气候变暖将通过改变土壤碳氮磷养分来影响本区域微生物群落组成结构。这对进一步深入了解气候变化对山地生态系统土壤养分循环过程具有重要意义。  相似文献   

13.
Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.  相似文献   

14.
水田改果园后土壤性质的变化及其特征   总被引:3,自引:0,他引:3  
杨东伟  章明奎 《生态学报》2015,35(11):3825-3835
近年来,水田改作经济林地,在我国南方地区非常普遍。为深入了解这一转变对土壤质量的影响,以浙江省典型水稻土(青粉泥田)及其改果园不同年限的系列表层土壤(0—15 cm)为研究对象,应用磷脂脂肪酸生物标记等方法,研究了水田改果园后土壤理化性质和微生物群落结构等性质的变化以及它们之间的关系。结果表明,水田改果园后,土壤中大于0.25 mm水稳定性团聚体、盐基饱和度、p H值、有机质、全氮和碱解氮等随着改果园年限的延长而显著降低(P0.05)。土壤微生物生物量碳氮、微生物商和土壤呼吸强度随改果园年限增加而显著下降(P0.01)。土壤微生物群落结构也发生明显变化:磷脂脂肪酸总量显著降低(P0.01),微生物种类减少,原生动物在土壤微生物中所占比例增加,革兰氏阴性细菌与革兰氏阳性细菌比值降低(P0.01),好氧细菌/厌氧细菌和甲烷氧化菌/细菌增加(P0.01),表征养分胁迫的环丙基脂肪酸/前体物和异式脂肪酸/反异支链脂肪酸显著增加(P0.01)。冗余分析表明,土壤含水率、有机质和碱解氮是决定水田和果园土壤微生物群落结构差异的最重要因子(P0.01);改果园后,土壤微生物群落结构发生了阶段性变化,不同利用方式对微生物群落结构的影响程度要大于同一利用方式耕作不同年限对微生物群落结构的影响。研究表明,水田改果园后土壤理化性质以及生物学性质发生退化,土壤质量下降;而水田中微生物数量和种类都比较丰富,因而认为水田是土壤(地)可持续利用的一种有效方式。  相似文献   

15.
16.
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.  相似文献   

17.
Investigating biological control over soil carbon temperature sensitivity   总被引:2,自引:0,他引:2  
Understanding the temperature sensitivity of soil respiration is critical for predicting the response of ecosystems to climate change, yet the microbial communities responsible are rarely considered explicitly in studies or models. In this study, we assessed total microbial community composition, quantified bacterial respiration temperature response, and investigated the temperature dependence of bacterial carbon substrate utilization in tropical, temperate, and taiga soils (from Puerto Rico, California, and Alaska). Microbial community composition was characterized using phospholipid fatty acid analysis. Bacterial community respiration on a standardized set of substrates was ascertained using the BiOLOG substrate utilization assay incubated at four temperatures: 4, 12, 28, and 40 °C. First, we found that microbial communities from the three latitudes were compositionally distinct and that the bacterial component of the three communities had markedly different respiration temperature–response curves corresponding with their experienced temperature regimes. We use these data to highlight limitations of widely used temperature–response equations and investigate temperature-dependent patterns of substrate utilization. We found that temperature response, in terms of both respiration rates and substrate use, varied for these bacterial communities independent of substrate quality or quantity interactions such as labile depletion. In contrast to the common assumption of heterotrophic microbial ubiquity, we found that bacterial community differences from these diverse systems appeared to determine both rates of respiration and patterns of carbon substrate usage. We suggest that microbial community composition-specific responses to changing climate may be important in predicting the long-term role of ecosystems in atmospheric CO2 dynamics.  相似文献   

18.
Degradation of soil properties following deforestation and long-term soil cultivation may lead to decreases in soil microbial diversity and functional stability. In this study, we investigated the differences in the stability (resistance and resilience) of microbial community composition and enzyme activities in adjacent soils under either native tropical forest (FST) or in agricultural cropping use for 14 years (AGR). Mineral soil samples (0 to 5 cm) from both areas were incubated at 40°C, 50°C, 60°C, or 70°C for 15 min in order to successively reduce the microbial biomass. Three and 30 days after the heat shocks, fluorescein diacetate (FDA) hydrolysis, cellulase and laccase activities, and phospholipid-derived fatty acids-based microbial community composition were measured. Microbial biomass was reduced up to 25% in both soils 3 days after the heat shocks. The higher initial values of microbial biomass, enzyme activity, total and particulate soil organic carbon, and aggregate stability in the FST soil coincided with higher enzymatic stability after heat shocks. FDA hydrolysis activity was less affected (more resistance) and cellulase and laccase activities recovered more rapidly (more resilience) in the FST soil relative to the AGR counterpart. In the AGR soil, laccase activity did not show resilience to any heat shock level up to 30 days after the disturbance. Within each soil type, the microbial community composition did not differ between heat shock and control samples at day 3. However, at day 30, FST soil samples treated at 60°C and 70°C contained a microbial community significantly different from the control and with lower biomass regardless of high enzyme resilience. Results of this study show that deforestation followed by long-term cultivation changed microbial community composition and had differential effects on microbial functional stability. Both soils displayed similar resilience to FDA hydrolysis, a composite measure of a broad range of hydrolases, supporting the concept of high functional redundancy in soil microbial communities. In contrast, the resilience of the substrate-specific activities of laccase and cellulase were lower in AGR soils, indicating a less diverse community of microorganisms capable of producing these enzymes and confirming that specific microbial functions are more sensitive measurements for evaluating change in the ecological stability of soils.  相似文献   

19.
The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.  相似文献   

20.
Climate models project that precipitation patterns will likely intensify in the future, resulting in increased duration of droughts and increased frequency of large soil rewetting events, which are stressful to the microorganisms that drive soil biogeochemical cycling. Historical conditions can affect contemporary microbial responses to environmental factors through the persistence of abiotic changes or through the selection of a more tolerant microbial community. We examined how a history of intensified rainfall would alter microbial functional response to drying and rewetting events, whether this historical legacy was mediated through altered microbial community composition, and how long community and functional legacies persisted under similar conditions. We collected soils from a long-term field manipulation (Rainfall Manipulation Plot Study) in Kansas, USA, where rainfall variability was experimentally amplified. We measured respiration, microbial biomass, fungal:bacterial ratios and bacterial community composition after collecting soils from the field experiment, and after subjecting them to a series of drying–rewetting pulses in the lab. Although rainfall history affected respiration and microbial biomass, the differences between field treatments did not persist throughout our 115-day drying–rewetting incubation. However, soils accustomed to more extreme rainfall did change less in response to lab moisture pulses. In contrast, bacterial community composition did not differ between rainfall manipulation treatments, but became more dissimilar in response to drying–rewetting pulses depending on their previous field conditions. Our results suggest that environmental history can affect contemporary rates of biogeochemical processes both through changes in abiotic drivers and through changes in microbial community structure. However, the extremity of the disturbance and the mechanism through which historical legacies occur may influence how long they persist, which determines the importance of these effects for biogeochemical cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号