首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

2.
Behavioral and physiological responses to hypoxia were examined in three sympatric species of sharks: bonnethead shark Sphyrna tiburo, blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi, using closed system respirometry. Sharks were exposed to normoxic and three levels of hypoxic conditions. Under normoxic conditions (5.5–6.4mg l–1), shark routine swimming speed averaged 25.5 and 31.0cm s–1 for obligate ram-ventilating S. tiburo and C. acronotus respectively, and 25.0cm s–1 for buccal-ventilating M. norrisi. Routine oxygen consumption averaged about 234.6 mg O2kg–1h–1 for S. tiburo, 437.2mg O2kg–1h–1 for C. acronotus, and 161.4mg O2 kg–1 h–1 for M. norrisi. For ram-ventilating sharks, mouth gape averaged 1.0cm whereas M. norrisi gillbeats averaged 56.0 beats min–1. Swimming speeds, mouth gape, and oxygen consumption rate of S. tiburo and C. acronotus increased to a maximum of 37–39cm s–1, 2.5–3.0cm and 496 and 599mg O2 kg–1 h–1 under hypoxic conditions (2.5–3.4mg l–1), respectively. M. norrisi decreased swimming speeds to 16cm s–1 and oxygen consumption rate remained similar. Results support the hypothesis that obligate ram-ventilating sharks respond to hypoxia by increasing swimming speed and mouth gape while buccal-ventilating smoothhound sharks reduce activity.  相似文献   

3.
Synopsis Arsenic persists in Chautauqua Lake, New York waters 13 years after cessation of herbicide (sodium arsenite) application and continues to cycle within the lake. Arsenic concentrations in lake water ranged from 22.4–114.81 g l–1, = 49.0 ag l–1. Well water samples generally contained less than 10 g l–1 arsenic. Arsenic concentrations in lake water exceeded U.S. Public Health Service recommended maximum concentrations (10 g l–1) and many samples exceeded the maximum permissible limit (50 g l–1). Fish accumulated arsenic from water but did not magnify it. Fish to water arsenic ratios ranged from 0.4–41.6. Black crappie (Pomoxis nigromaculatus) contained the highest arsenic concentrations (0.14–2.04 g g–1 ), X = 0.7 g g–1) while perch (Perca flavescens), muskellunge (Esox masquinongy) and largemouth bass (Micropterus salmoides) contained the lowest concentrations (0.02–0.13 g g–1). Arsenic concentrations in fish do not appear to pose a health hazard for human consumers.  相似文献   

4.
Lactobacillus helveticus grown in milk with pH control at 6.2 had a slower growth rate (=0.27 h–1) and produced less exopolysaccharide (49 mg l–1) but increased lactic acid production (425 mM) compared to cultures without pH control (=0.5 h–1, 380 mg exopolysaccharide l–1, and 210 mM lactate), respectively. Both cultures displayed a mixed-acid fermentation with formation of acetate, which is linked not only to citrate metabolism, but also to alternative pathways from pyruvate.  相似文献   

5.
O'Neil  J. M.  Roman  M. R. 《Hydrobiologia》1994,292(1):235-240
Trichodesmium is a filamentous, colonial nitrogen fixing cyanobacteria, ubiquitous in tropical and subtropical regions of the world's oceans. Trichodesmium fixes atmospheric nitrogen and can comprise a significant fraction of total primary production in oceanic surface waters. Therefore, the consumption and fate of Trichodesmium has important consequences for understanding carbon and nitrogen cycling in the open ocean. The pelagic harpacticoid copepod Macrosetella gracilis uses Trichodesmium not only as a physical substrate for juvenile development, but also as a food source. Several different types of pelagic copepods (including several species of calanoids, harpacticoids and a poecilostomatoid species) were tested for ingestion of Trichodesmium by labelling the cyanobacteria with 14C. Only the pelagic harpacticoids ingested Trichodesmium. Here we report the first grazing rates based on 14C-uptake measurements for Macrosetella gracilis (0.173 µg C copepod–1 h–1), and the first quantitative measurements of both Miracia efferata (0.402 µg C copepod–1 h–1) and Oculosetella gracilis (0.126 µg C copepod–1 h–1) ingesting this cyanobacteria. Ingestion rates of M. gracilis and M. efferata on the two different species of Trichodesmium, T. thiebautii and T. erythraeum, as well as the two different colonial morphologies of T. thiebautii, spherical-shaped (puffs) and fusiform (tufts), were also compared. Both Miracia and Macrosetella had higher ingestion rates on the puff colonies than the tuft colonies of T. thiebautii.. Both also had higher ingestion rates of T. erythraeum than T. thiebautii. Trichodesmium thiebautii contains a previously reported neurotoxin which may be an important factor in determining trophodynamic interactions. Our results suggest that pelagic harpacticoid copepods can be quantitatively important in determining the fate of Trichodesmium carbon and nitrogen.  相似文献   

6.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

7.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

8.
Certain yeast cells on solid nutrient medium produced colonies surrounded by a light zone of selenite absorption. This screening procedure resulted in the selection of 22 strains out of 200 isolates with different Se4+-absorbing capacity ranging from 16 to 98.8 g Se4+ g–1 l–1 h–1. The highest rate of Se4+ elimination from the Na2SeO3 solution was observed with an oval shaped, cream pigmented fermentative yeast, tentatively called Candida sp. strain MS4. This strain was isolated from wastewater and found to accumulate selenium oxyanions. Se4+ uptake involved both inactive and active phenomena. The amounts of selenium (initial concentration 2 mg Se4+ l–1) removed from aqueous solution by inactive and active phenomena were 667 g Se4+ g–1 l–1, and 1580 g Se4+ g–1 l–1, respectively. The strain also removed selenate inactively (135 g Se6+ g–1 l–1).  相似文献   

9.
G.-H. An 《Biotechnology letters》2001,23(12):1005-1009
Catabolites related to tricarboxylic acid cycle affected growth and carotenogenesis in Phaffia rhodozyma. Glutamate, glutamine, aspartate, asparagine and proline at 75 mM of N increased biomass from 2 g l–1 to 2.9–4.7 g l–1 but decreased carotenoid from 420 g g–1 yeast to 200–260 g g–1 yeast in strain 67-385. However, simple nitrogen sources did not decrease carotenoid formation. Tricarboxylic acid intermediates repressed carotenogenesis to a less degree than the corresponding amino acids. Carotenoid hyper-producing mutants were impaired in nitrogen utilization. These results indicated that nitrogen assimilation and the concentrations of tricarboxylic acid cycle intermediates are involved in regulation of carotenoid biosynthesis.  相似文献   

10.
We studied the effect of triacontanol (TRIA) on shoot multiplication and rooting of in vitro derived shoot tips of Capsicum frutescens and Decalepis hamiltonii W & A. In both shoot multiplication and rooting phases, TRIA was administered at 2-20 g l–1. TRIA resulted in highest promotion of axillary shoot proliferation at 2 g l–1 in Capsicum frutescens and 20 g l–1 in Decalepis hamiltonii while rooting was maximum at 5 and 10 g l–1 for Capsicum frutescens and Decalepis hamiltonii respectively. TRIA enhanced shoot growth and chlorophyll content of leaves and also influenced root induction and supported growth of the roots. This work reveals that TRIA can be used as an effective growth regulator in the micropropagation of Capsicum frutescens and Decalepis hamiltonii, an endangered shrub of Deccan peninsular India.  相似文献   

11.
Adventitious shoot regeneration was observed using leaf-petiole explants from shoot-proliferating cultures of Comet red raspberry (Rubus idaeus L.). A maximum regeneration rate of 70% (3.7 shoots/explant) was obtained using 4.5–9.1 M (1–2 mg l–1) N-phenyl-N-1,2,3-thiadiazol-5-ylurea (thidiazuron or TDZ) with 2.5–4.9 M (0.5–1 mg l–1) 1H-indole-3-butanoic acid (IBA) or 2.3 M (0.5 mg l–1) TDZ with 4.9 M (1 mg l–1) IBA in modified Murashige-Skoog medium. TDZ was more effective than N-(phenylmethyl)-1H-purin-6-amine (BA) at promoting regeneration in combinations tested with IBA (maximum 50% regeneration rate; 1.8 shoots/explant). Variation in the agar concentration or incubation temperature, orientation or scoring of the leaf-petiole explants and use of separate leaf or petiole explants had no effect on shoot regeneration. Incubation in the dark for 1, 2 or 3 weeks prior to growth in the light did not influence the percent regeneration rate but depressed the number of adventitious shoots. Explant source, from micropropagated shoots or greenhouse-grown plants, had an effect on shoot regeneration that was genotype dependent. Only 8 of 22 (36%) raspberry cultivars were capable of regeneration from leaf explants derived from greenhouse-grown plants.  相似文献   

12.
Saccharomyces cerevisiae-based ethanol fermentations were conducted in batch culture, in a single stage continuous stirred tank reactor (CSTR), a multistage CSTR, and in a fermentor contaminated with Lactobacillus that corresponded to the first fermentor of the multistage CSTR system. Using a glucose concentration of 260 g l–1 in the medium, the highest ethanol concentration reached was in batch (116gl–1), followed by the multistage CSTR (106gl–1), and the single stage CSTR continuous production system (60gl–1). The highest ethanol productivity at this sugar concentration was achieved in the multistage CSTR system where a productivity of 12.7gl–1h–1 was seen. The other fermentation systems in comparison did not exceed an ethanol productivity of 3gl–1h–1. By performing a continuous ethanol fermentation in multiple stages (having a total equivalent working volume of the tested single stage), a 4-fold higher ethanol productivity was achieved as compared to either the single stage CSTR, or the batch fermentation.  相似文献   

13.
Using primary cultures of gill pavement cells from freshwater rainbow trout, a method is described for achieving confluent monolayers of the cells on glass coverslips. A continuous record of intracellular pH was obtained by loading the cells with the pH-sensitive flourescent dye 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and mounting the coverslips in the flowthrough cuvette of a spectrofluorimeter. Experiments were performed in HEPES-buffered media nominally free of HCO3. Resting intracellular pH (7.43 at extracellular pH=7.70) was insensitive to the removal of Cl or the application of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (0.1 mmol·l–1), but fell by about 0.3 units when Na+ was removed or in the presence of amiloride (0.2 mmol·l–1). Exposure to elevated ammonia (ammonia prepulse; 30 mmol·l–1 as NH4Cl for 6–9 min) produced an increase in intracellular pH (to about 8.1) followed by a slow decay, and washout of the pulse caused intracellular pH to fall to about 6.5. Intracellular non-HCO 3 buffer capacity was about 13.4 slykes. Rapid recovery of intracellular pH from intracellular acidosis induced by ammonia prepulse was inhibited more than 80% in Na+-free conditions or in the presence of amiloride (0.2 mmol·l–1). Neither bafilomycin A1 (3 mol·l–1) nor Cl removal altered the intracellular pH recovery rate. The K m for Na+ of the intracellular pH recovery mechanism was 8.3 mmol·l–1, and the rate constant at V max was 0.008·s–1 (equivalent to 5.60 mmol H+·l–1 cell water·min–1), which was achieved at external Na+ levels from 25 to 140 mmol·l–1. We conclude that intracellular pH in cultured gill pavement cells in HEPES-buffered, HCO 3 -free media, both at rest and during acidosis, is regulated by a Na+/H+ antiport and not by anion-dependent mechanisms or a vacuolar H+-ATPase.Abbreviations BCECF 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein - BCECF/AM 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein, acetoxymethylester - Cholin-Cl choline chloride - DMSO dimethyl sulfoxide - EDTA ethylene diamine tetra-acetic acid - FBS foetal bovine serum - H + -ATPase Proton-dependent adenosine triphosphatase - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethanesulfonic acid] - pH i intracellular pH - pH e extracellular pH - PBS phosphate-buffered saline - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid  相似文献   

14.
A 23 full factorial design was used to study the influence of different experimental variables, namely wort gravity, fermentation temperature and nutrient supplementation, on ethanol productivity from high gravity wort fermentation by Saccharomyces cerevisiae (lager strain), under pilot plant conditions. The highest ethanol productivity (0.69 g l–1 h–1) was obtained at 20°P [°P is the weight of extract (sugar) equivalent to the weight of sucrose in a 100 g solution at 20°C], 15°C, with the addition of 0.8% (w/v) yeast extract, 24 mg l–1 ergosterol and 0.24% (v/v) Tween 80.  相似文献   

15.
The kinetics of amylolytic enzyme formation by a yeast cell wall lytic Arthrobacter species were studied. Cultivation on autoclaved cells of baker's yeast showed that amylase formation was closely related to trehalose and glycogen dissimilation. Growth on yeast glycogen (0.5%) proceeded quite rapidly ( = 0.31 h–1) with extensive amylase formation during exponential cell multiplication and a further low increase in activity during the stationary phase. Beside amylolytic activity [450 units (U) l–1] the formation of a relatively high level of -glucosidase (90 U l–1) was detected, the latter almost exclusively bound to bacterial cells. Growth on 0.5% trehalose occurred at a reduced rate ( = 0.22 h–1) with post-logarithmic enzyme synthesis in the stationary phase. Amylase activity attained a level of 1200 U l–1, whereas -glucosidase was very low at 7.7 U l–1. Continuous culture experiments in the chemostat showed maximal volumetric productivity of amylase (105 U l–1 h–1) at a dilution rate of 0.15 h–1. Growth on various carbohydrates revealed low levels of amylolytic activity (<100 U l–1), which were increased by a -1,4-glucans and oligosaccharides such as starch, dextrin, maltotriose and maltose. On 0.5% maltose, growth-associated enzyme synthesis (230 U l–1) was detected at a reduced growth rate ( = 0.14 h–1). Amylolytic enzyme preparations from the culture fluid showed an unusual cleavage pattern; acting on starch, the polymer was almost completely hydrolysed to maltotriose and maltose in a molar ratio of 3:1.Correspondence to: W. A. Hampel  相似文献   

16.
Flax anther culture: effect of genotype,cold treatment and media   总被引:2,自引:0,他引:2  
We report on screening of wide range of flax cultivars for androgenic response and on testing of induction conditions for flax (Linum usitatissimum L.) anther culture and plant regeneration. Anthers were cultured on four different media: Mo, N6, MS and N&N supplemented with various combinations of growth regulators. The induction of callus formation from cultured anthers was the highest on N6 (with cultivar PR FGL 77 – 12 %) and N&N media (with cultivar Carolin – 2.8 %), preferentially after cold pretreatment (7days at 8 °C). Shoots were formed on calli derived from the microspores inside the cultured anthers on media N&N and N6 supplemented with 1mgl–1 zeatin or 1mgl–1BAP + 1mgl–1NAA, respectively and elongated on MS medium supplemented with 2mgl–1 zeatin. The highest number of shoots (120) was observed with cultivar Red Wing. Shoots were rooted on MS medium supplemented with 2mgl–1IAA. Our experiments resulted in total in 62 % anther response and 155 plants regenerated and transferred into soil.  相似文献   

17.
This paper provides an approach for optimizing the cell density (Xc) and dilution rate (D) in a chemostat for a Pichia pastoris continuous fermentation for the extracellular production of a recombinant protein, interferon (INF-). The objective was to maximize the volumetric productivity (Q, mg INF- l–1 h–1), which was accomplished using response surface methodology (RSM) to model the response of Q as a function of Xc and D within the ranges 150 Xc 450 g cells (wet weight) l–1 and 0.1 mD0.9 m (m=0.0678 h–1, the maximum specific growth rate obtained from a fed-batch phase controlled with a methanol sensor). The methanol and medium feed rates that resulted in the desired Xc and D were determined based on the mass balance. From the RSM model, the optimal Xc and D were 328.9 g l–1 and 0.0333 h–1 for a maximum Q of 2.73 mg l–1 h–1. The model of specific production rate (, mg INF- g–1 cells h–1) was also established and showed the optimal Xc=287.7 g l–1 and D=0.0361 h–1 for the maximum (predicted to be 8.92×10–3 mg–1 g–1 h–1). The methanol specific consumption rate (, g methanol g–1 cells h–1) was calculated and shown to be independent of the cell density. The relationship between and (specific growth rate) was the same as that discovered from fed-batch fermentations of the same strain. The approach developed in this study is expected to be applicable to the optimization of continuous fermentations by other microorganisms.  相似文献   

18.
Production of hydrogen peroxide has been found in Ulva rigida (Chlorophyta). The formation of H2O2 was light dependent with a production of 1.2 mol·g FW–1·h–1 in sea water (pH 8.2) at an irradiance of 700 mol photons m–2·s–1. The excretion was also pH dependent: in pH 6.5 the production was not detectable (< 5 nmol·g FW–1·h–1) but at pH 9.0 the production was 5.0 mol·g FW–1·h–1. The production of H2O2 was totally inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). The ability of U. rigida growing in tanks (7501) under a natural light regime to excrete H2O2 was checked and found to be seven times higher at 08.00 hours than other times of the day. The H2O2 concentration in the cultivation tank (density: 2 g FW·l–1) reached the highest value (3 M) at 11.00 hours. Photosynthesis was not influenced by H2O2 formation. The H2O2 is suggested to come from the Mehler reaction (pseudocyclic photophosphorylation). With an oxygen evolution of 120 mmol·g FW–1·h–1 at pH 8.2 and 90 mmol·g FW–1·h–1 at pH 9.0, 0.5% and 2.7% of the electrons were used for extracellular H2O2 production. The H2O2 production is sufficiently high to be of physiological and ecological significance, and is suggested to be a part of the defence against epi and endophytes.Abbreviations ACL artificial, continuous light - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - GNL greenhouse - LDC Luminol-dependent chemiluminescence - SOD Superoxide dismutase This investigation was supported by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Hierta-Retzius Foundation, Marianne and Marcus Wallenberg Foundation, the Swedish Environmental Protection Board, and CICYT Spain.  相似文献   

19.
The production of erythritol and the erythritol yield from glucose by Torula sp. were improved, in increasing order, by supplementing with 10 mg MnSO44H2O l–1, 2 mg CuSO45H2O l–1, and both 10 mg MnSO44H2O l–1 and 2 mg CuSO45H2O l–1. Mn2+ decreased the intracellular concentration of erythritol, whereas Cu2+ increased the activity of erythrose reductase in cells. These results suggest that Mn2+ altered the permeability of cells, whereas Cu2+ increased the activity of erythrose reductase in cells.  相似文献   

20.
The kinetic parameters of lipase, bacterial secondaryproduction (BSP) and bacterial numbers (BN) were determined fortnightlyduringthe development of the summer phytoplankton bloom at twostationsof Alte Donau, a hypertrophic stagnant dead arm of the riverDanubein Vienna. Until the middle of August we observed a gradualincrease in lipase activity as well as BN and BSP rates tothe maximum of 19.9 nmol l–1 h–1,4.5×109cells l–1 and 8.1 g C l–1 h–1,respectively. Atthe end of August and during September we found a markeddecreasein all bacterial parameters, coinciding with a progressingincreaseof chlorophyll a concentrations at both sampling sites. Themaximalvalues of lipase Vmax were determined in the bottom waterlayer (avg. 13.7±6.5 nmol l–1 h–1) probablyowingto the predominating importance of polymeric matter in thesubstrate pool for microheterotrophs in this water zone.Differential filtration experiments showed that 20.1% to56.3% ofthe total lipase activity and 4.2% to 9.0% of the totalbacterialnumbers in Alte Donau water samples occurred in 0.2-mfiltrate. Further experiments indicated that the highcontributionto lipase activity in the 0.2-m filtrate was rather dueto thepresence of 0.2 m filterable bacteria than to solubleenzymemolecules. Moreover, we observed higher bacterial lipaseactivityin 0.2 m filtrate than in unfiltered samples. Thepossibleinfluence of limiting factors on the metabolism of insitubacteria is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号