首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change and landscape fragmentation are considered to be the main treats to biodiversity. In this study, probable alteration of future species distribution was tested based on the association of landscape fragmentation and climate change scenarios compared to the classical approach that assumed an unchanged landscape. Also, projected range shifts including realistic dispersal scenarios were compared with classical models, in which no or full dispersal has been supposed.A GIS-based cellular automata model, MigClim, was implemented to projection of future distribution over the 21st century for three plant species in a study area of the central Germany. For each species, simulations were run for four dispersal scenarios (full dispersal, no dispersal, realistic dispersal, and realistic dispersal with long-distance dispersal events), two landscape fragmentation (static and dynamic change) and two climate change (RCP4.5 and RCP8.5) scenarios. In this research, temporal satellite data were utilized to simulate landscape changes by the use of a hybrid (CA-Markov) model for the years 2020, 2040, 2060 and 2080.A significant difference appears to be between the simulations of realistic dispersal limitations and those considering full or no dispersal for projected future distributions. Although simulations accounting for dispersal limitations produced, for our study area, results that were closer to no dispersal than to full dispersal. Additionally, our results revealed that change in landscape fragmentation is more effective than the climate change impacts on species distributions in this study.  相似文献   

2.
Reconstruction of a species demographic history can be used to investigate impacts of environmental change through time. Australia’s mesic biome experienced massive changes during the Holocene, including climate fluctuations, increased human populations, and European settlement. Using microsatellite data from 202 brush-tailed rock-wallabies (Petrogale penicillata) sampled across the species current geographic range, we investigated gene flow and inferred the demographic history of the species to explore the historical impacts of environmental change on this once wide-ranging marsupial mammal. We found high levels of genetic diversity in all colonies, despite very restricted contemporary gene flow and no sign of historical gene flow. Demographic analyses showed that individual populations have low effective population sizes (N e?<?200). We identified a major historical decline throughout the species range occurring 10,000–1000 years before present, spanning a period with increased El Niño Southern Oscillation activity, increased human population size and establishment of the dingo population. This major decline pre-dates the European settlement of Australia and so places the species most recent dramatic decline into context, suggesting that brushed-tailed rock-wallabies were inherently vulnerable to major changes to their environment.  相似文献   

3.
Aim To determine the potential combined effects of climate change and land transformation on the modelled geographic ranges of Banksia. Location Mediterranean climate South West Australian Floristic Region (SWAFR). Methods We used the species distribution modelling software Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate‐severity scenarios at 2070, taking the impacts of land transformation on species’ ranges into account. The species were chosen to reflect the biogeography of Banksia in the SWAFR. Results Climate‐severity scenario, dispersal scenario, biogeographic distribution and land transformation all influenced the direction and magnitude of the modelled range change responses for the 18 species. The predominant response of species to all climate change scenarios was range contraction, with exceptions for some northern and widespread species. Including land transformation in estimates of modelled geographic range size for the three climate‐severity scenarios generally resulted in smaller gains and larger declines in species ranges across both dispersal scenarios. Including land transformation and assuming zero dispersal resulted, as expected, in the greatest declines in projected range size across all species. Increasing climate change severity greatly increased the risk of decline in the 18 Banksia species, indicating the critical role of mitigating future emissions. Main conclusions The combined effects of climate change and land transformation may have significant adverse impacts on endemic Proteaceae in the SWAFR, especially under high emissions scenarios and if, as expected, natural migration is limiting. Although these results need cautious interpretation in light of the many assumptions underlying the techniques used, the impacts identified warrant a clear focus on monitoring across species ranges to detect early signs of change, and experiments that determine physiological thresholds for species in order to validate and refine the models.  相似文献   

4.
Modelling of climate change-induced species range shifts has generally addressed migration limitations inadequately, often assuming 'null' migration or instantaneous 'full' migration extremes. We describe methods for incorporating simple migration rate assumptions into multispecies modelling, using the Proteaceae of the Cape Floristic Region. Even with optimistic migration assumptions, range loss projections more closely approximate null migration than full migration assumptions. Full migration results were positively skewed by few species with large range increases, an overestimate eliminated by dispersal-limited migration rate assumptions. Wind- and ant/rodent-dispersed species responded differently to climate change. Initially larger ranges of wind-dispersed species were more strongly reduced by climate change, despite far greater assumed dispersal distances — we suggest that these well-dispersed species populate more marginal areas of potential range, causing lower resilience to climatic changes at range margins. Overall, range loss rate slowed with advancing climate change, possibly because species ranges contracted into core areas most resilient to climate change. Thus, a consideration of simple dynamics of range change (rather than single step, present–future comparisons of range) provide new insights relevant for conservation strategies, in particular, and for guiding monitoring efforts to detect and gauge the impacts of climate change on natural populations.  相似文献   

5.
The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.  相似文献   

6.
7.
Many studies have investigated the potential impacts of climate change on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have simplified dispersal as either unlimited or null. However, depending on the dispersal capacity of a species, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of the future distribution of plant species.
To quantify the discrepancies between simulations accounting for dispersal or not, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal, and realistic dispersal with long-distance dispersal events) and under four climate change scenarios.
Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, the unlimited dispersal simplification did nevertheless provide good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analysis of the temporal pattern of species extinctions over the entire 21st century revealed that important species extinctions for our study area might not occur before the 2080–2100 period, due to the possibility of a large number of species shifting their distribution to higher elevation.  相似文献   

8.
Five species of mouse or forest shrews (Myosorex) are endemic to South Africa, Lesotho and Swaziland, four of which (Myosorex varius, Myosorex cafer, Myosorex longicaudatus and Myosorex cf. tenuis) are associated with montane or temperate grassland, fynbos and/or forest habitats while a fifth (Myosorex sclateri) is associated with lowland subtropical forests. Due to their small size, specialised habitat, low dispersal capacity, high metabolism and sensitivity to temperature extremes, we predicted that, particularly for montane species, future climate change should have a negative impact on area of occupancy (AOO) and ultimately extinction risks. Species distribution models (SDMs) indicated general declines in AOO of three species by 2050 under the A1b and A2 climate change scenarios (M. cafer, M. varius, M. longicaudatus) while two species (M. sclateri and M. cf. tenuis) remained unchanged (assuming no dispersal) or increased their AOO (assuming dispersal). While temperate species such as M. varius appear to be limited by temperature maxima (preferring cooler temperatures), the subtropical species M. sclateri appears to be limited by temperature minima (preferring warmer temperatures). Evidence for declines in AOO informed the uplisting (to a higher category of threat) of the Red List status of four Myosorex species to either vulnerable or endangered as part of a separate regional International Union for Conservation of Nature (IUCN) Red List assessment.  相似文献   

9.
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this "realistic" dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species' range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species.  相似文献   

10.
Climate change may shrink and/or shift plant species ranges thereby increasing their vulnerability and requiring targeted conservation to facilitate adaptation. We quantified the vulnerability to climate change of plant species based on exposure, sensitivity and adaptive capacity and assessed the effects of including these components in complementarity‐based spatial conservation prioritisation. We modelled the vulnerability of 584 native plant species under three climate change scenarios in an 11.9 million hectare fragmented agricultural region in southern Australia. We represented exposure as species' geographical range under each climate change scenario as quantified using species distribution models. We calculated sensitivity as a function of the impact of climate change on species' geographical ranges. Using a dispersal kernel, we quantified adaptive capacity as species' ability to migrate to new geographical ranges under each climate change scenario. Using Zonation, we assessed the impact of individual components of vulnerability (exposure, sensitivity and adaptive capacity) on spatial conservation priorities and levels of species representation in priority areas under each climate change scenario. The full vulnerability framework proved an effective basis for identifying spatial conservation priorities under climate change. Including different dimensions of vulnerability had significant implications for spatial conservation priorities. Incorporating adaptive capacity increased the level of representation of most species. However, prioritising sensitive species reduced the representation of other species. We conclude that whilst taking an integrated approach to mitigating species vulnerability to climate change can ensure sensitive species are well‐represented in a conservation network, this can come at the cost of reduced representation of other species. Conservation planning decisions aimed at reducing species vulnerability to climate change need to be made in full cognisance of the sensitivity of spatial conservation priorities to individual components of vulnerability, and the trade‐offs associated with focussing on sensitive species.  相似文献   

11.
Climate change may affect hemisparasiticOrobanchaceae (ex-Scrophulariaceae) both directly through impacts on hemiparasite physiology and indirectly through impacts on host plants. This dual action suggests particular sensitivity of the parasite to climate change and any associated impacts on hosts and other members of the community. While little research has addressed the responses of parasitic plants to climate change in natural environments, impacts are predicted from controlled environment studies together with a knowledge of the key ecophysiological traits of hemiparasiticOrobanchaceae, in particular ofStriga species, which are important weeds in semi-arid tropical agro-ecosystems, andRhinanthus species, which can be important components of (principally) grassland communities in the northern temperate zone. The main mode of important components of (principally) grassland communities in the northern temperate zone. The main mode of action of both elevated CO2 and warming will be through changes in photosynthesis and stomatal functioning. Enhanced photosynthesis of the hemiparasite and host will increase parasite carbon gains but may also increase the demand for host mineral nutrients. Mineral nutrition may, therefore, mediate the impacts of climate change on host-parasite associations. The relative insensitivity of hemiparasite stomata to elevated CO2 suggests that high stomatal conductances may be maintained and thus solute uptake may become limited by soil drying driven by higher rates of evapotranspiration and reduced precipitation. Climate change impacts on host-parasite interactions at the individual level will ultimately affect hemiparasite impacts at the community level. Community impacts will be greatest where climate change considerably favours hemiparasite populations or, conversely, causes them to disappear from communities where they were formerly abundant. Impacts will further be mediated by climate impacts on hosts, and the natural enemies of hosts and parasites alike. Further, the wide host range of many root hemiparasitic plants may facilitate migration of their populations through new communities under a changing climate.  相似文献   

12.
The geographic distributions of many taxonomic groups remain mostly unknown, hindering attempts to investigate the response of the majority of species on Earth to climate change using species distributions models (SDMs). Multi‐species models can incorporate data for rare or poorly‐sampled species, but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single‐species models to those from a multi‐species modeling approach, Generalized Dissimilarity Modeling (GDM). We found that both single‐ and multi‐species models forecasted large changes in ant community composition in relatively warm environments. GDM predicted higher turnover than SDMs and across a larger contiguous area, including the southern third of North America and notably Central America, where the proportion of ants with relatively small ranges is high and where data limitations are most likely to impede the application of SDMs. Differences between approaches were also influenced by assumptions regarding dispersal, with forecasts being more similar if no‐dispersal was assumed. When full‐dispersal was assumed, SDMs predicted higher turnover in southern Canada than did GDM. Taken together, our results suggest that 1) warm rather than cold regions potentially could experience the greatest changes in ant fauna under climate change and that 2) multi‐species models may represent an important complement to SDMs, particularly in analyses involving large numbers of rare or poorly‐sampled species. Comparisons of the ability of single‐ and multi‐species models to predict observed changes in community composition are needed in order to draw definitive conclusions regarding their application to investigating climate change impacts on biodiversity.  相似文献   

13.
Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change.  相似文献   

14.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

15.
The effective population size (N e ) is a key parameter in evolutionary and population genetics. Single-sample N e estimation provides an alternative to traditional approaches requiring two or more samples. Single-sample methods assume that the study population has no genetic sub-structure, which is unlikely to be true in wild populations. Here we empirically investigated two single-sample estimators (onesamp and L d N e) in replicated and controlled genetically structured populations of Drosophila melanogaster. Using experimentally controlled population parameters, we calculated the Wright–Fisher expected N e for the structured population ( Total N e ) and demonstrated that the loss of heterozygosity did not significantly differ from Wright’s model. We found that disregarding the population substructure resulted in Total N e estimates with a low coefficient of variation but these estimates were systematically lower than the expected values, whereas hierarchical estimates accounting for population structure were closer to the expected values but had a higher coefficient of variation. Analysis of simulated populations demonstrated that incomplete sampling, initial allelic diversity and balancing selection may have contributed to deviations from the Wright–Fisher model. Overall the approximate-Bayesian onesamp method performed better than L d N e (with appropriate priors). Both methods performed best when dispersal rates were high and the population structure was approaching panmixia.  相似文献   

16.
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning.  相似文献   

17.
The analysis of climate change impact is essential to include in conservation planning of crop wild relatives (CWR) to provide the guideline for adequate long-term protection under unpredictable future environmental conditions. These resources play an important role in sustaining the future of food security, but the evidence shows that they are threatened by climate change. The current analyses show that five taxa were predicted to have contraction of more than 30 % of their current ranges: Artocarpus sepicanus (based on RCP 4.5 in both no dispersal and unlimited dispersal scenario and RCP 8.5 in no dispersal scenario by 2050), Ficus oleifolia (RCP 4.5 5 in both no dispersal and unlimited dispersal scenario by 2080), Cocos nucifera and Dioscorea alata (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050), and Ficus chartacea (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050 and 2080). It shows that the climate change impact is species-specific. Representative Concentration Pathways (RCP) of greenhouse gas (GHG) emission and dispersal scenarios influence the prediction models, and the actual future distribution range of species falls in between those scenarios. Climate refugia, holdout populations, and non-analogue community assemblages were identified based on the Protected Areas (PAs) network. PAs capacity is considered an important element in implementing a conservation strategy for the priority CWR. In areas where PAs are isolated and have less possibility to build corridors to connect each other, such as in Java, unlimited dispersal scenarios are unlikely to be achieved and assisted dispersal is suggested. The holdout populations should be the priority target for the ex situ collection. Therefore, by considering the climate refugia, PAs capacity and holdout populations, the goal of keeping high genetic variations for the long-term conservation of CWR in Indonesia can be achieved.  相似文献   

18.
It remains a challenge to identify the geographical patterns and underlying environmental associations of species with unique ecological niches and distinct behaviors. This in turn hinders our understanding of the ecology as well as effective conservation management of threatened species. The white-eared night heron (Gorsachius magnificus) is a non-migratory nocturnal bird species that has a patchy distribution in the mountainous forests of East Asia. It is currently categorized as “Endangered” on the IUCN Red List, primarily due to its restricted range and fragmented habitat. To improve our knowledge of the biogeography and conservation of this species, we modeled the geographical pattern of its suitable habitat and evaluated the potential impacts of climate change using ecological niche modeling with a maximum entropy approach implemented in Maxent. Our results indicated that the amount of suitable habitat in all of East Asia was about 130 000 km2, which can be spatially subdivided into several mountain ranges in southern and southwestern China and northern Vietnam. The extent of suitable habitat range may shrink by more than 35% under a predicted changing climate when assuming the most pessimistic condition of dispersal, while some more suitable habitat would be available if the heron could disperse unrestrainedly. The significant future changes in habitat suitability suggested for Gorsachius magnificus urge caution in any downgrading of Red List status that may be considered. Our results also discern potentially suitable areas for future survey efforts on new populations. Overall, this study demonstrates that ecological niche modeling offers an important tool for evaluating the habitat suitability and potential impacts of climate change on an enigmatic and endangered species based on limited presence data.  相似文献   

19.
MigClim: Predicting plant distribution and dispersal in a changing climate   总被引:1,自引:0,他引:1  
Aim Many studies have forecasted the possible impact of climate change on plant distributions using models based on ecological niche theory, but most of them have ignored dispersal‐limitations, assuming dispersal to be either unlimited or null. Depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under‐ or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of ‘potentially suitable’ and ‘potentially colonizable’ habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed Mig Clim, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. Mig Clim implements various parameters, such as dispersal distance, increase in reproductive potential over time, landscape fragmentation or long‐distance dispersal. Location Western Swiss Alps. Methods Using our Mig Clim model, several simulations were run for two virtual species by varying dispersal distance and other parameters. Each simulation covered the 100‐year period 2001–2100 and three different IPCC‐based temperature warming scenarios were considered. Results of dispersal‐limited projections were compared with unlimited and no‐dispersal projections. Results Our simulations indicate that: (1) using realistic parameter values, the future potential distributions generated using Mig Clim can differ significantly (up to more than 95% difference in colonized surface) from those that ignore dispersal; (2) this divergence increases under more extreme climate warming scenarios and over longer time periods; and (3) the uncertainty associated with the warming scenario can be as large as the one related to dispersal parameters. Main conclusions Accounting for dispersal, even roughly, can importantly reduce uncertainty in projections of species distribution under climate change scenarios.  相似文献   

20.
  1. Tropical ectotherm species tend to have narrower physiological limits than species from temperate areas. As a consequence, tropical species are considered highly vulnerable to climate change since minor temperature increases can push them beyond their physiological thermal tolerance. Differences in physiological tolerances can also be seen at finer evolutionary scales, such as among populations of ectotherm species along elevation gradients, highlighting the physiological sensitivity of such organisms.
  2. Here, we analyze the influence of elevation and bioclimatic domains, defined by temperature and precipitation, on thermal sensitivities of a terrestrial direct‐developing frog (Craugastor loki) in a tropical gradient. We address the following questions: (a) Does preferred temperature vary with elevation and among bioclimatic domains? (b) Do thermal tolerance limits, that is, critical thermal maximum and critical thermal minimum vary with elevation and bioclimatic domains? and (c) Are populations from high elevations more vulnerable to climate warming?
  3. We found that along an elevation gradient body temperature decreases as environmental temperature increases. The preferred temperature tends to moderately increase with elevation within the sampled bioclimatic domains. Our results indicate that the ideal thermal landscape for this species is located at midelevations, where the thermal accuracy (db) and thermal quality of the environment (de) are suitable. The critical thermal maximum is variable across elevations and among the bioclimatic domains, decreasing as elevation increases. Conversely, the critical thermal minimum is not as variable as the critical thermal maximum.
  4. Populations from the lowlands may be more vulnerable to future increases in temperature. We highlight that the critical thermal maximum is related to high temperatures exhibited across the elevation gradient and within each bioclimatic domain; therefore, it is a response to high environmental temperatures.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号