首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tropical forests provide a wide range of ecosystem services (ES), and their continuous supply depends on efficient and effective management against deforestation and forest degradation. In Ecuador, indigenous communities are highly dependent on the forest and therefore on forest ES. However, there is a lack of knowledge about their demands concerning ES. In order to better understand how local and indigenous people use the forest and to facilitate its management, this study completed a spatially explicit assessment of ES using participatory mapping in the Sumaco Biosphere Reserve (Napo province, Central-Northern Ecuador). The Biosphere Reserve is suitable as a case study because it is a protected area with high land-use and population pressure and therefore requires the development and monitoring of management plans.First, semi-structured interviews were conducted with experts (n = 15) in order to identify the most important ES used by the communities in the study area. In a second step, members (n = 208) of 24 communities were asked to indicate on a 3-D map where they utilize the different ES (food, wood, water, tourism, hunting). The highlighted localities were digitized and then analyzed with statistical and GIS techniques. The results showed that the ES locations were not randomly distributed, but were most abundant four kilometers or less from roads. Spatial pattern analysis identified hotspots of ES provision, and the evaluation according to administrative units allowed us to identify five municipalities where demand for all assessed ES was high. In conclusion, the combination of participatory mapping of ES and GIS-based analysis can facilitate the identification of priority protection areas, provide guidance for developing specific forest management strategies, and also support monitoring systems to detect forest degradation.  相似文献   

2.
Spatially well-informed decisions are essential to sustain and regulate processes and ecosystem services (ES), and to maintain the capacity of ecosystems to supply services. However, spatially explicit ES information is often lacking in decision-making, or exists only as ES maps based on categorical land cover data. Remote sensing (RS) opens new pathways to map ES, in particular biophysical ES supply. We developed an observation-based concept for spatially explicit and continuous ES mapping at landscape scale following the biophysical part of the ES cascade. We used Earth observations in combination with in situ data to map ecosystem properties, functions, and biophysical ES supply. We applied this concept in a case study to map two ES: carbon dioxide regulation and food supply. Based on Earth observations and in situ data, we determined the ecosystem property Sun-Induced chlorophyll Fluorescence (SIF) to indicate ecosystem state and applied scaling models to estimate gross primary production (GPP) as indicator for ecosystem functioning and consequently carbon dioxide regulation and food supply as ES.Resulting ES maps showed heterogeneous patterns in ES supply within and among ecosystems, which were particularly evident within forests and grasslands. All investigated land cover classes were sources of CO2, with averages ranging from ‐66 to ‐748 g C m‐2 yr‐1, after considering the harvest of total above ground biomass of crops and the storage organ, except for forest being a sink of CO2 with an average of 105 g C m‐2 yr‐1. Estimated annual GPP was related to food supply with a maize grain yield average of 9.5 t ha‐1 yr‐1 and a sugar beet root yield of 110 t ha‐1 yr‐1. Validation with in situ measurements from flux towers and literature values revealed a good performance of our approach for food supply (relative RMSE of less than 23%), but also some over- and underestimations for carbon dioxide regulation. Our approach demonstrated how RS can contribute to spatially explicit and continuous ES cascade mapping and suggest that this information could be useful for environmental assessments and decision-making in spatial planning and conservation.  相似文献   

3.
The conservation and sustainable management of forests has become an important issue, especially in ecosystems where keystone species form unique and marginal forest habitats with narrow distribution. With increasing pressures and threats to nature, the establishment of Protected Areas has been recognized as a major tool for maintaining well-functioning forest ecosystems and their associated ecosystem services (ES). This study aims at assessing the changes in the status of a narrowly distributed Mediterranean forest through the perspective of land cover dynamics and the ES framework. Using the priority habitat of Cedrus brevifolia forest as a case study, the distribution of land use and land cover (LULC) was mapped and simulated, together with the supply of multiple ES before and after the implementation of conservation measures. The results prior applying the management actions revealed a general pattern of forest densification that did not act fully in favor of C. brevifolia due to competitions among forest species. From an ES viewpoint, forest densification led to landscape homogenization affecting important ES such as the increase in the supply of regulating services, and the decrease in the ability to support nursery populations and habitats. By contrast, the future simulation of LULC integrated with afforestation and thinning measures showed an expected increase in both high-density vegetation and cedar trees, benefiting multiple ES. The current findings highlight the importance of sustainable forest management in enhancing the co-occurrence of several ES and supporting the overall multi-functionality of ecosystems. The holistic approach presented in this study can offer new insights into the relation between ES and natural ecosystem and/or habitats’ management while avoiding potential negative impacts on human well-being and ecosystem resilience.  相似文献   

4.
Riparian zones are central landscape features providing several ecosystem services and are exceptionally rich in biodiversity. Despite their relatively low area coverage, riparian zones consequently represent a major concern for land and water resource managers confirmed within several European directives. These directives involve effective multi-scale monitoring to assess their conditions and their ability to carry out their functions. The objective of this research was to develop automated tools to provide from a single aerial LiDAR dataset new mapping tools and keystone riparian zone attributes assessing the ecological integrity of the riparian zone at a network scale (24 km).Different metrics were extracted from the original LiDAR point cloud, notably the Digital Terrain Model and Canopy Height Model rasters, allowing the extraction of riparian zones attributes such as the wetted channel (0.89 m; mean residual) and floodplain extents (6.02 m; mean residual). Different riparian forest characteristics were directly extracted from these layers (patch extent, overhanging character, longitudinal continuity, relative water level, mean and relative standard deviation of tree height). Within the riparian forest, the coniferous stands were distinguished from deciduous and isolated trees, with high accuracy (87.3%, Kappa index).Going further the mapping of the indicators, our study proposed an original approach to study the riparian zone attributes within different buffer width, from local scale (50 m long channel axis reach) to a network scale (ca. 2 km long reaches), using a disaggregation/re-agraggation process. This novel approach, combined to graphical presentations of the results allow natural resource managers to visualise the variation of upstream–downstream attributes and to identify priority action areas.In the case study, results showed a general decrease of the riparian forests when the river crosses built-up areas. They also highlighted the lower flooding frequency of riparian forest patches in habitats areas.Those results showed that LiDAR data can be used to extract indicators of ecological integrity of riparian zones in temperate climate zone. They will enable the assessment of the ecological integrity of riparian zones to be undertaken at the regional scale (13,000 km, completely covered by an aerial LIDAR survey in 2014).  相似文献   

5.
6.
The structure, function, and ecosystem services of tropical forest depend on its species richness, diversity, dominance, and the patterns of changes in the assemblages of tree populations over time. Long-term data from permanent vegetation plots have yielded a wealth of data on the species diversity and dynamics of tree populations, but such studies have only rarely been undertaken in tropical forest landscapes that support large human populations. Thus, anthropogenic drivers and their impacts on species diversity and community structure of tropical forests are not well understood. Here we present data on species diversity, community composition, and regeneration status of tropical forests in a human-dominated landscape in the Western Ghats of southern India. Enumeration of 40 plots (50 m × 20 m) results a total of 106 species of trees, 76 species of saplings and 79 species of seedlings. Detrended Correspondence Analysis ordination of the tree populations yielded five dominant groups, along disturbance and altitudinal gradients on the first and second axes respectively. Abundant species of the area such as Albizia amara, Nothopegia racemosa and Pleiospermum alatum had relatively few individuals in recruiting size classes. Our data indicate probable replacement of rare, localized, and old-growth ‘specialists’ by disturbance-adapted generalists, if the degradation is continuing at the present scale.  相似文献   

7.
Within the Ecological Footprint methodology, the carbon Footprint component is defined as the regenerative forest capacity required to sequester the anthropogenic carbon dioxide emissions that is not absorbed by oceans. A key parameter of the carbon Footprint is the Average Forest Carbon Sequestration (AFCS), which is calculated from the net carbon sequestration capacity of forests ecosystems.The aim of this paper is to increase the clarity and transparency of the Ecological Footprint by reviewing the rationale and methodology behind the carbon Footprint component, and updating a key factor in its calculation, the AFCS. Multiple calculation options have been set to capture different rates of carbon sequestration depending on the degree of human management of three types of forest considered (primary forests, other naturally regenerated forests and planted forests). Carbon emissions related to forest wildfires and soil as well as harvested wood product have been included for the first time in this update of the AFCS calculation. Overall, a AFCS value range of 0.73 ± 0.37 t C ha−1 yr−1 has been identified. The resulting carbon Footprint and Ecological Footprint values have then been evaluated based on this value range. Results confirm that human demand for ecosystem services is beyond the biosphere's natural capacity to provide them.  相似文献   

8.
9.
In the humid warm-temperate zone of southwestern Japan, old-growthforests have been seriously fragmented to small remnants due to traditionalagriculture and coppicing as well as recent rapid plantation with conifers.Assemblages of longicorn beetles (Coleoptera: Disteniidae and Cerambycidae) werecompared among old-growth forests, second-growth forests and conifer plantationsusing collision traps baited with chemical attractants. Species richness oflongicorn beetles was poorer in second-growth forests and conifer plantationsthan in old-growth forests. It was proved by multidimensional scaling(MDS) that the beetle assemblages of old-growth forests were distinct from thoseof conifer plantations, while those of second-growth forests were intermediatebetween them. Further analysis showed that a number of species, including manyPidonia spp., were specific to or closely associated withold-growth forests, and the results were largely supported by the indicatorvalue (IndVal) approach. It is likely that many of such old-growth forestspecies in the larval and pupal stages require large broad-leaved trees standingor fallen with thick bark. At the same time, the flower-visiting adults wouldplay an important role in pollinating various herbaceous and woody plants.Regional forest management for the conservation of insect biodiversity is alsodiscussed.  相似文献   

10.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

11.
Western Hubei is the most concentrated area of forest resources in Hubei Province, and the knowledge of the distribution characteristics of ecosystem carbon density is important to understand the regional characteristics of carbon density and its mechanism of formation. Carbon density and factors influencing different layers in the ecosystem were studied by using field data. The average carbon density of ecosystems in western Hubei was 159.05 t/hm2; the carbon density of different forest types in descending order was Abies fargesii forests (362.25 t/hm2), mixed broadleaf-conifer forests (154.13 t/hm2), broad-leaved forests (146.09 t/hm2), and coniferous forests (135.76 t/hm2), and ecosystem carbon density increased with increasing age. The carbon density of the arborous layer, shrub layer, and soil layer of A. fargesii forests was significant higher than that of the other forests (P < 0.05), indicating the carbon storage per unit area of A. fargesii forests, which grow at higher elevations, was the greatest. The carbon density in arborous layers of broad-leaved forests, mixed broadleaf-conifer forests, and coniferous forests was 39.29 t/hm2, 48.99 t/hm2, and 48.39 t/hm2, respectively. Those of the soil layer were 102.96 t/hm2, 100.97 t/hm2, and 82.37 t/hm2, respectively, and there were no significant differences among them. Among the three forest types, carbon density in the litter layer was greater than that of the shrub layer, which indicated the litter layer plays an important role in carbon storage. The carbon density of mixed broadleaf-conifer forests was greatest, excluding A. fargesii forests, in medium (58.71 t/hm2) and mature forests (79.66 t/hm2). Thus, the carbon sink of mixed broadleaf-conifer forests had more potential than the others at the medium and mature forest stage. The soil layer carbon density in different forests constituted 60.67—70.48% of the entire ecosystem, and was 1.70—2.62 times greater than that of the arborous layer. There are many factors influencing ecosystem carbon density, which result from the interaction of environmental and topographical factors. The main explanatory variables of carbon density of the region were altitude, precipitation, and canopy density. The vegetation and soil layer carbon density increased as altitude increased, and the rate of change for every vertical 100 m was 1.3 t/hm2 and 1.9 t/hm2, respectively (P < 0.05). Although the annual average precipitation only affected the carbon density of the vegetation, it increased to 4 t/hm2 (P < 0.01) when average precipitation was >100 mm.  相似文献   

12.
13.
Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates.  相似文献   

14.
Age-related tree responses to climate change are still poorly understood at the individual tree level. In this paper, we seek to disentangle the relative contribution of tree age to growth decline and growth–climate relationships in Atlas cedar (Cedrus atlantica Manetti) trees at the Middle Atlas Mountains, northern Morocco. Dendrochronological methods were applied to quantify growth–climate relationships using tree-ring width indices (TRWi) calculated for cedars of two contrasting age groups (old trees, age ≥150 years; young trees, age <150 years). TRWi–climate relationships were assessed at the site and tree levels by using response functions and linear mixed-effects models, respectively. Growth of the studied Atlas cedars was negatively affected by recurrent droughts and by the steep temperature rise since the 1970s. Response functions and mixed-effects models indicated that the decline in tree growth was mainly explained by diminishing precipitation. The negative association between cedar growth and temperature was stronger in old than in young trees. Vulnerability to temperature-induced drought stress in old cedar trees may lead to an impending growth decline. We argue that the age dependence of growth sensitivity to drought must be quantified and considered at the individual tree level when predicting the future dynamics and persistence of cedar forests in the Moroccan Middle Atlas.  相似文献   

15.
Naturally dynamic forests have a high proportion of biotopes with old large trees, diverse vertical and horizontal structure at multiple scales, and much dead wood. As such, they provide habitat to species and ecosystem processes that forests managed for wood production cannot provide to the same degree. Whether termed old-growth, ancient, virgin, intact, primeval or continuity forests, a major challenge and need is to map such potential high conservation value forest for subsequent inclusion in functional habitat networks for biodiversity conservation in forest landscapes. Given that the delivery time of natural forest properties is much longer than of industry wood, we explore the usefulness of using historical maps to identify forests that have been continuously present for 220 years (potential old-growth) versus 140 years (potential aging forest) in a case study in the Romanian Carpathian Mountains (see Online Resource 1). While the total forest cover increased by 35 % over the past two centuries, the area of potential aging and potential old-growth forest declined by 56 and 34 %, respectively. Spatial modelling of edge effects and patch size for virtual species with different requirements indicated an even greater decrease in the area of functional habitat networks of old-growth and ageing forest. Our analyses show that compared to simple mapping of potential high conservation forests, the area of functional habitat patches is severely overestimated, and caution is needed when estimating the area of potential high conservation value forests that form functional habitat networks, i.e. a green infrastructure. In addition, the landscape and regional scale connectivity of patches needs to be considered. We argue that the use of historical maps combined with assessment of spatial patterns is an effective tool for identifying and analyzing potential high conservation value forests in a landscape context.  相似文献   

16.
长白山二道白河森林流域溪流倒木调查研究   总被引:6,自引:2,他引:4  
邓红兵  王青春  潘文斌  周莉  代力民 《生态学报》2002,22(11):1896-1901
溪流倒木是森林生态系统对水生态系统最重要、最直观的输入和干扰之一,也是两系统之间的主要联结,对于溪流生态系统的稳定、水生生物多样性、河槽形态及其变化过程有着重要的作用。重点对长白山北坡溪流倒木现存量进行了调查和研究,在调查的红松阔叶林植被带内4500m长河道内,共发现溪流倒木425株.分属于17个树种;其中l、w级腐烂占相当大的比重,与林地倒木I、l级腐烂占忧有所不同,其原因可能与分解环境的不同有关。所有溪流倒木的总材积为77.98m^2,故溪流倒木的现存量为1.733m^3/100m和10.83m^3/hm^2。溪流倒木的树种组成和不同树种的材积与河岸带植被密切相关,但存在差异。研究表明林分形成倒木并进入河流在时间上可能是均匀或随机的,但不同树种间,其形成倒木并进入河流时的树木材积或生长年龄存在较大差异。溪流倒木和林地活立木的个体数量的径级分布基本上为反J型,而它们材积的径级分布均为典型的J型。  相似文献   

17.
QuestionsUncertainty in detecting disturbance histories has long been ignored in dendrochronological studies in forest ecosystems. Our goal was to characterize this uncertainty in relation to the key parameters of forest ecosystems and sample size. In addition, we aimed to provide a method to define uncertainty bounds in specific forest ecosystems with known parameters, and to provide a required (conservative) minimal sample size to achieve a pre-defined level of uncertainty if no actual key forest parameters are known.LocationTraining data were collected from Žofínský Prales (48°40′N, 14°42′E, 735–830 m a.s.l., granite, Czech Republic).MethodsWe used probability theory and expressed uncertainty as the length (the difference between the upper and lower bounds) of the 95% confidence interval. We studied the uncertainty of (i) the initial growth of trees – if they originated under canopy or in a gap; and (ii) the responses to disturbance events during subsequent growth – on the basis of release detection in the radial growth of trees. These two variables provide different information, which together give a picture of the disturbance history. While initial growth date the existence of a gap in a given decade (recent as well as older gaps are included), release demonstrates the moment of a disturbance event.ResultsWith the help of general mathematical deduction, we have obtained results valid across vegetation types. The length of a confidence interval depends on the sample size, proportion of released trees in a population, as well as on the variability of tree layer features (e.g., crown area of suppressed and released trees).ConclusionsMost studies to date have evaluated the initial growth of trees with higher uncertainty than for canopy disturbed area. The length of the 95% confidence interval for detecting initial growth has been rarely shorter than 0.1 (error ± 5%) and has mostly been much longer. To reach 95% confidence interval length of 0.1 (error ± 5%) when detecting the canopy disturbed area, at least 485 tree cores should be evaluated in studied time period, while to reach a 0.05 interval length (error ± 2.5%) at least 1925 tree cores are required. Our approach can be used to find the required sample size in each specific forest ecosystem to achieve pre-defined levels of uncertainty while detecting disturbance history.  相似文献   

18.
Forest age is one of the most simple but ecologically effective key values that may be controlled by forest management. Young and mature but managed forests differ significantly from old-growth forests in species composition, structure and socio-ecological function. Human land-use has already caused the loss or dramatic reduction in occurrence of some entire species assemblages, especially of logging-sensitive species, in Central European forests. These general statements also apply to beech forests, beech (Fagus sylvatica) being the naturally dominating tree species in Central Europe. Based on data for breeding birds (from 258 sampling plots in a sub-montane and 228 plots in a montane area), molluscs (36 plots in the sub-montane and 79 plots in the montane area) and lichens (84 plots in the montane forest), this paper aims at identifying significant forest age threshold ranges for the occurrence of these old-growth sensitive taxa. The sampling plots in the sub-montane zone (420–520 m a.s.l.) are in beech-oak forests, plots in the montane zone (650–1150 m a.s.l.) are in beech-spruce-fir forests. Stand ages in both areas range up to around 350–400 years. Threshold values for the total number of species related to stand age were calculated by recursive partitioning.In all three taxonomic groups the number of species per plot significantly increases with forest age. The same analysis was run for red-listed lichen and mollusc species as well as hole-nesting bird species. The threshold values obtained are very similar to those for the whole species assemblages, except for molluscs where considerably lower threshold values are computed with red-listed species assemblages. Regarding the confidence intervals, the difference pattern between the whole species datasets and the more sensitive species subsets is inconsistent. Threshold values in sub-montane beech forests range from 100 to 170 years and in mixed montane forests from 160 to 220 years.These threshold levels are clearly incompatible with economic interests that aim on reducing the rotation period in beech stands to less than 140 years to avoid formation of red heartwood. It would therefore seem to be essential to establish a network of trees and stands that are never logged and may thus act as areas for retreat and dispersion for logging-sensitive species.  相似文献   

19.
Ecological studies in tropical rain forests traditionally focus on trees above a threshold diameter at breast height (dbh), since ignoring plant species of the other structural compartments is believed to be an acceptable tradeoff between exhaustiveness and effectiveness. However, the consequences of missing species below a threshold dbh value have been largely neglected so far. We evaluated whether the response of species diversity of ≥10-cm dbh trees was similar to the response of other structural ensembles (namely treelets, saplings, and terricolous herbs) in a lowland tropical rain forest, to three disturbance regimes: natural gap dynamics (control), and selective logging with and without additional thinning. We studied forest vegetation composition and diversity in a 20-yr replicated field experiment comprising nine 1 ha permanent plots established in a semi-deciduous rain forest of the Congo Basin and equally distributed among the three treatments. Once corrected by stem density, species richness was similar between logged (20 years since logging) and untouched old-growth forest stands with respect of trees, but higher with respect of treelets. As disturbance intensity increased, species richness increased within sapling layers but decreased within herb layers, while species spatial turnover (beta diversity) increased in both cases. Regarding the parameters of the partitioned rarefaction curves and relative abundance distribution curves, no correlation was found between trees and any of the other structural compartments. Whilst tree and treelet species composition was similar among treatments, the understories still reflected past disturbance intensity, with a strong response of the sapling and herb layers. These results show that ecological studies based solely on tree layers (dbh  10 cm) are misleading because their response to disturbance cannot be used as a surrogate for the response of other structural ensembles. Long-lasting effects of anthropogenic disturbance on the sapling bank and the herb layer may durably influence the long-term forest dynamics. Since overstory but not understory plant communities have recovered from human disturbances 20 years after silvicultural operations, African tropical rain forest ecosystems may not be as resilient to selective logging as previously thought.  相似文献   

20.
We studied for two years the seasonal changes in plant available nitrate and ammonium nitrogen (N), nitrification, N-mineralization, microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP) in two forest and three cropland sites, derived from a tropical forest ecosystem of India. Results indicated that seasonal values of nitrate N, ammonium N and phosphate P ranged from 7.33–12.99, 5.1–10.22 and 4.0–7.8 μg g?1 in forest and 4.13–9.26, 9.35–14.46 and 2.8–5.8 μg g?1 in cropland ecosystems, respectively, with maximum values in summer and minimum in rainy seasons. Nitrification and N-mineralization values varied from 6–28 and 4–26 μg g?1 mo?1 in forest and 3–14 μg g?1 mo?1 and 4–17 μg g?1 mo?1 in cropland, with maximum values in rainy season and minimum in summer season.MBC, MBN MBP ranged from 393–753, 34–80 and 16–36 μg g?1 in forests and 186–414, 21–41 and 11–22 μg g?1 in croplands, being maximum in summer and minimum in rainy seasons. There was gradual increase in the values of inorganic N, nitrification, N-mineralization and MBC, MBN and MBP along the age of cropland. Analysis of variance indicated significant difference in the concentration of inorganic N, nitrification and N-mineralization and MBC, MBN and MBP due to sites and seasons.Cultivation caused decline in the mean annual organic C, N and P by 42%, 29% and 13%. The values of nitrate N were decreased by 23–38%, while ammonium N was increased by 39–74%. Nitrification and N-mineralization values were reduced by 39–63% and 40–60%, respectively. Microbial C, N and P were reduced by 44–54%, 41–50% and 28–44%, respectively. Nonetheless, the contribution of soil microbial biomass reflected in total N was enhanced from 4.76% in forest to 5.03% in cropland ecosystem. Enhancement of plant available ammonium-N and microbial contribution in total N are an indicator of natural conserving mechanism to check the nitrogen loss from the nutrient poor agro-ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号