首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell.  相似文献   

2.
Much progress has been made in recent years in the understanding of angiogenesis, yet signalling pathways involved remain poorly defined. Here we report that small RhoA GTPase is implicated in the invasion of human microvascular endothelial cells (HMEC-1). Ectopic expression of active-RhoA GTPase induced the expression of MMP-9 metalloproteinase, a key proteinase of the basement membrane, and promoted migration of endothelial cells through a 3D-matrix protein gel. MMP-9 was either directed as vesicular-like patches to the apical side of cells, or addressed to specific membrane sites at the cell surface. Confocal microscopy analyses indeed revealed clustering of MMP-9 in advancing lamellipodia at the forefront of endothelial cells, where this proteinase colocalized with RhoA and CD44, a transmembrane receptor known to be proteolysed in tumor cell progression. In addition, TIMP-1, a natural MMP inhibitor, significantly reduced the invasion of RhoAV14 expressing cells, suggesting that MMP-9 was a critical metalloproteinase responsible, at least partly, for the RhoAV14-induced endothelial cell invasion. We propose that RhoA triggers signalling pathways that, upregulating expression of a proteinase at specific membrane localizations, may confer an highly invasive phenotype to endothelial cells.  相似文献   

3.
Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.  相似文献   

4.
The Gram-negative pathogen Pseudomonas aeruginosa invades epithelial cells in vivo and in vitro . We have examined the pathway(s) by which epithelial cells internalize P. aeruginosa strain PA103 using Madin-Darby canine kidney (MDCK) cells. We have recently demonstrated that P. aeruginosa internalization occurs by an actin-dependent Toxin B-inhibited pathway which becomes downregulated as epithelial cells become polarized, suggesting that one or more of the Rho family GTPases is involved in bacterial internalization. Here, we demonstrate that activation of the Rho family GTPases by cytotoxic necrotizing factor 1 (CNF-1) stimulates P. aeruginosa internalization. Examination of the roles of the individual Rho family GTPases in internalization shows that expression of a constitutively active allele of RhoA (RhoAV14), but not of constitutively active Rac1 (Rac1V12) or Cdc42 (Cdc42V12), is sufficient to increase uptake of PA103 pscJ . This relative increase persists when bacterial infection is established at the basolateral surface of polarized cells, suggesting that the effect of RhoAV14 is not simply due to its known ability to disrupt tight junction integrity in polarized cells. RhoAV14-mediated stimulation of bacterial uptake is actin dependent as it is abrogated by exposure to latrunculin A. We also find that endogenous Rho GTP levels in epithelial cells are increased by infection with an internalized strain of P. aeruginosa; conversely, a poorly internalized isogenic strain expressing the bacterial anti-internalization protein ExoT causes decreased Rho GTP levels. Experimental inhibition of Rho, either by expressing dominant negative RhoAN19 or by inhibiting native Rho using a membrane permeable fusion construct of a Rho-specific inhibitor, C3 ADP-ribosyltransferase, does not inhibit PA103 pscJ internalization in MDCK or HeLa cells. Models consistent with these data are presented.  相似文献   

5.
The Rho family of GTP-binding proteins plays critical roles during myogenesis induction. To elucidate their role later during myogenesis, we have analyzed RhoA function during myoblast fusion into myotubes. We find that RhoA activity is rapidly and transiently increased when cells are shifted into differentiation medium and then is decreased until myoblast fusion. RhoA activity must be down-regulated to allow fusion, because expression of a constitutively active form of RhoA (RhoAV14) inhibits this process. RhoAV14 perturbs the expression and localization of M-cadherin, a member of the Ca2+-dependent cell-cell adhesion molecule family that has an essential role in skeletal muscle cell differentiation. This mutant does not affect N-cadherin and other proteins involved in myoblast fusion, beta1-integrin and ADAM12. Active RhoA induces the entry of M-cadherin into a degradative pathway and thus decreases its stability in correlation with the monoubiquitination of M-cadherin. Moreover, p120 catenin association with M-cadherin is decreased in RhoAV14-expressing cells, which is partially reverted by the inhibition of the RhoA effector Rho-associated kinase ROCK. ROCK inhibition also restores M-cadherin accumulation at the cell-cell contact sites. We propose that the sustained activation of the RhoA pathway inhibits myoblast fusion through the regulation of p120 activity, which controls cadherin internalization and degradation.  相似文献   

6.
7.
It has been shown previously that when utrophin is highly expressed in mice which lack dystrophin, the muscle pathology is prevented. Immunohistochemical evidence strongly suggests that utrophin in these transgenic mice occupies the position normally filled by dystrophin, although it is not possible to establish this firmly at the level of the light microscope. Using the higher resolution provided by the electron microscope, we demonstrate here by immunogold labelling with both monoclonal and polyclonal antibodies that utrophin, in both its truncated and full-length forms, is indeed specifically located in the subcellular position usually occupied by dystrophin in normal muscle. Moreover, when double-labelling of utrophin and beta-dystroglycan was carried out, colocalisation of the two labels was often seen, indicating an association of the two proteins. Furthermore, when both utrophin and dystrophin were labelled in a transgenic line in which both were simultaneously expressed, the sites of both proteins were in the same zone in relation to the plasma membrane. When both proteins were present, the density of labelling of each was reduced compared with when they are expressed individually, suggesting that there is a finite number of binding sites. These results constitute further support for the view that utrophin might be therapeutically substituted for dystrophin in dystrophic muscle.  相似文献   

8.
9.
Duchenne muscular dystrophy (DMD), a severe X-linked recessive disorder that results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. An approach to the search for a treatment is to compensate for dystrophin loss by utrophin, another cytoskeletal protein. During development, in normal as in dystrophic embryos, utrophin is found at the membrane surface of immature skeletal fibres and is progressively replaced by dystrophin. Thus, it is possible to consider utrophin as a 'foetal homologue' of dystrophin. In a previous work, we studied the effect of L-arginine, the substrate of nitric oxide synthetase (NOS), on utrophin expression at the muscle membrane. Using a novel antibody, we confirm here that the immunocytochemical staining was indeed due to an increase in utrophin at the sarcolemma. The result is observed not only on mdx (an animal model of DMD) myotubes in culture but also in mdx mice treated with L-arginine. In addition, we show here the utrophin increase in muscle extracts of mdx mice treated with L-arginine, after electrophoretic separation and western-blotting using this novel antibody, and thus extending the electrophoretic results previously obtained on myotube cultures to muscles of treated mice.  相似文献   

10.
11.
Rho is known as an important regulator of actin microfilament formation. We were led to study it because a dynamic rearrangement of actin filaments occurs during activation of gastric acid secretion. In order to use specific probes, the rabbit gastric gland culture system was employed and the various genes were expressed using adenovirus vector. When the constitutive active mutant of Rho (RhoAV14) was expressed, histamine- or carbachol-stimulated acid secretion monitored by (14)C-aminopyrine accumulation was inhibited. Conversely, expression of C3 toxin, the specific inhibitor of Rho, and expression of G(12/13)-specific regulator of G-protein signaling domain, the specific inhibitor of G(12/13) which is considered to be an upstream mediator of Rho, both potentiated acid secretion stimulated by the agonists. F-actin staining of parietal cell expressing RhoAV14 revealed that the microfilament supporting the intracellular canaliculi (not on the basolateral membrane) almost disappeared. No clear changes in the intracellular localization of Rho were observed during stimulation of parietal cell. In resting glands, the endogenous active form of Rho was relatively high, and it decreased during histamine stimulation. The finding that any treatment which inhibit Rho augment acid secretion whereas those that activate Rho inhibit secretion strongly suggests that the Rho-pathway conducts a negatively regulating signal in parietal cell activation, possibly via site-specific regulation of actin microfilaments.  相似文献   

12.
13.
Although the precise function of utrophin at the postsynaptic membrane of the neuromuscular junction still remains unclear, despite recent genetic ‘knockout’ experiments(1,2), a separate study in a transgenic mouse model system for Duchenne muscular dystrophy (DMD) has nonetheless shown that overexpression of utrophin into extrasynaptic regions of muscle fibers can functionally compensate for the lack of dystrophin and alleviate the muscle pathology(3). In this context, the next step is to identify the mechanisms presiding over expression of utrophin at the neuromuscular synapse in attempts to induce its expression throughout DMD muscle fibers. In fact, additional studies have shown that an important DNA element contained with the utrophin promoter may confer synapse-specific expression to the utrophin gene(4,5). Identification of the events culminating in the transaction of the utrophin gene within synaptic myonuclei should provide important cues for the development of an effective therapeutic strategy for DMD.  相似文献   

14.
Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells.  相似文献   

15.
16.
Prins KW  Lowe DA  Ervasti JM 《PloS one》2008,3(6):e2419
We previously documented a ten-fold increase in gamma(cyto)-actin expression in dystrophin-deficient skeletal muscle and hypothesized that increased gamma(cyto)-actin expression may participate in an adaptive cytoskeletal remodeling response. To explore whether increased gamma(cyto)-actin fortifies the cortical cytoskeleton in dystrophic skeletal muscle, we generated double knockout mice lacking both dystrophin and gamma(cyto)-actin specifically in skeletal muscle (ms-DKO). Surprisingly, dystrophin-deficient mdx and ms-DKO mice presented with comparable levels of myofiber necrosis, membrane instability, and deficits in muscle function. The lack of an exacerbated phenotype in ms-DKO mice suggests gamma(cyto)-actin and dystrophin function in a common pathway. Finally, because both mdx and ms-DKO skeletal muscle showed similar levels of utrophin expression and presented with identical dystrophies, we conclude utrophin can partially compensate for the loss of dystrophin independent of a gamma(cyto)-actin-utrophin interaction.  相似文献   

17.
18.
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.  相似文献   

19.
Utrophin is normally confined to the neuromuscular junction (NMJ) in adult muscle and partially compensates for the loss of dystrophin in mdx mice. We show that Akt signaling and utrophin levels were diminished in sarcospan (SSPN)-deficient muscle. By creating several transgenic and knockout mice, we demonstrate that SSPN regulates Akt signaling to control utrophin expression. SSPN determined α-dystroglycan (α-DG) glycosylation by affecting levels of the NMJ-specific glycosyltransferase Galgt2. After cardiotoxin (CTX) injury, regenerating myofibers express utrophin and Galgt2-modified α-DG around the sarcolemma. SSPN-null mice displayed delayed differentiation after CTX injury caused by loss of utrophin and Akt signaling. Treatment of SSPN-null mice with viral Akt increased utrophin and restored muscle repair after injury, revealing an important role for the SSPN-Akt-utrophin signaling axis in regeneration. SSPN improved cell surface expression of utrophin by increasing transportation of utrophin and DG from endoplasmic reticulum/Golgi membranes. Our experiments reveal functions of utrophin in regeneration and new pathways that regulate utrophin expression at the cell surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号