首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Recent studies have shown that carbon monoxide (CO) may function as a gaseous signaling molecule in a similar way to nitric oxide. In the gastrointestinal tract, immunoreactivity against a CO-producing enzyme, heme oxygenase-2 (HO-2), was reported in epithelial cells and neurons of submucosal and myenteric plexus. However, details of the epithelial cells in the gastric mucosa remain unknown. The aim of this study was to clarify if mRNA for HO-2 is expressed in the rat stomach, if HO-2 protein is present in the mucosa, and to define the cell types of the HO-2-immunoreactive cells. HO-2 mRNA and protein were detected in fundic and pyloric mucosa of rat stomach using an RNA protection assay and western blot analysis. Immunohistochemical study showed that HO-2 was localized in parietal cells of the fundic glands and gastrin cells of the pyloric glands of both rat and monkey. The results suggest that HO-2 enzyme is produced in the gastric mucosa, and that CO is released from parietal cells and gastrin cells. Accepted: 12 November 1997  相似文献   

2.
Immunocytochemical localization of rabbit gastric lipase and pepsinogen   总被引:1,自引:0,他引:1  
Lipase and pepsin activities were determined in rabbit gastric biopsy specimens. Lipase activity was found to be restricted to a small part of the fundic mucosa, near the cardia, whereas pepsin activity spread over about two thirds of the total fundic area, overlapping that of lipase. The cells producing these two enzymes were labeled by immunofluorescence using polyclonal antibodies against rabbit gastric lipase (RGL) or antibodies against rabbit pepsinogen. The immunocytochemical localization showed unequivocally that RGL and pepsinogen, which were both present in the cardial area, were in fact located in different gastric cells. The cells producing pepsinogen were in the lower base of the gastric fundic glands, whereas the cells producing RGL were in the upper base of the same glands. The cells producing pepsinogen and RGL showed no significant morphological differences. In the part of the fundic area, where only pepsin activity was detected, cells producing pepsinogen covered both the lower and the upper base of the gastric glands. No chief cells were observed in the antral mucosa. RGL and pepsinogen could represent useful gastric enzyme markers for cellular differentiation studies.  相似文献   

3.
The precise anatomical relation by which autonomic nerve endings contact gastric epithelial cells to enhance the rate of gastric secretions is not fully understood. The aim of the present study was to clarify this issue by using the technique of serial section reconstruction of areas of the gastric mucosa. The work also explored the possibility of a functional role for a system of smooth muscle strands in the gastric mucosa that emanate from the muscularis mucosa, run in the lamina propria, and are associated in a unique manner with the gastric glands. Electron microscopic serial sections of the gastric mucosa were performed to visualize the entire limiting membrane of gastric epithelial cells to determine any nerve associations (especially varicose endings) with these cells. Evaluation of serial sections of five separate parietal cells showed that their basal membrane did not come in close contact (nearest distance 500 nm) with any nerve axon or varicosity. Moreover, the axons passing in the area of these cells ultimately showed varicose endings associated with smooth muscle cells in the adjacent connective tissue (often separated by only 20 nm), with mast cells or with vascular elements. Additionally, the lateral membrane of these five parietal cells did not contact any endocrine cell in the epithelium, although other parietal cells in the area were adjacent to endocrine cells. Chief cells in the immediate area also did not form any close associations with nerve varicosities. Random analysis of 5,000 additional epithelial cells in these sections showed no close associations to nerve elements with significant accumulations of neurosecretory vesicles (varicosities). Because of the observed existence of innervation to the smooth muscle strands in the area of the gastric glands, serial 1-micron epoxy sections of the gastric mucosa were prepared, and profiles of smooth muscle and gastric glands were entered into a computer-assisted reconstruction system. Three-dimensional reconstruction techniques were employed to reveal the existence of a unique association between the mucosal smooth muscle strands and the gastric glands. The muscle strands arose from the muscularis mucosa at regular intervals and became branched to form an intricate wrap around a series of gastric glands that empty into one gastric pit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
Summary Somatostatin cells in the stomach of the rat have a characteristic shape and distribution. In the antral mucosa they occur together with gastrin cells and enterochromaffin cells at the base of the glands. In the oxyntic mucosa they are scattered along the entire glands with some predominance in the zone of parietal cells. Throughout the gastric mucosa the somatostatin cells possess long and slender processes that emerge from the base of the cell and end in clublike swellings. Such processes appear to contact a certain proportion of neighbouring gastrin cells in the antral mucosa and parietal cells in the oxyntic mucosa.Exogenous somatostatin given by intravenous infusion to conscious rats counteracted the release of gastrin stimulated by feeding, elevated antral pH or vagal excitation. Gastrin causes parietal cells to secrete HCl and endocrine cells in the oxyntic mucosa to mobilise and synthesise histamine. Somatostatin is known to block the response of the parietal cells to gastrin. In contrast, somatostatin did not block the response of the histamine-storing endocrine cells to gastrin, perhaps because these endocrine cells lack receptors to somatostatin. Conceivably, somatostatin in the gastric mucosa has a paracrine mode of action. The observations of the present study suggest that somatostatin may affect some, but not all of the various cell types in the stomach. Under physiological conditions this selectivity may be achieved in the following ways: 1) Communication may be based on direct cell-to-cell contact. 2) Only certain cell types are supplied with somatostatin receptors.  相似文献   

6.
The results of an ultrastructural investigation of the gastric glands of the ruin lizard are reported. In this reptile the stomach can be divided into a larger fundus and a smaller pars pilorica. Fundic glands are characterized by three main kinds of cells: mucous, endocrine, and oxynticopeptic; the latter were not observed in the pyloric glands. The morphological features of the oxynticopeptic cells change from the proximal to the distal region of the fundic mucosa. In the proximal region, numerous electron-dense secretory granules, a well-developed granular endoplasmic reticulum, an evident Golgi complex, and a reduced system of smooth-surfaced vesicles and tubules in the apical cytoplasm characterize these cells. In the distal fundic region, oxynticopeptic cells possessed numerous mitochondria and a well-developed smooth-surfaced endoplasmic reticulum, but secretory granules were rare. These data suggest the existence of a gradient in the production of proteolytic enzymes, and perhaps also of hydrochloric acid, along the oral-aboral axis of the stomach. The results are discussed with regard to the evolution of the gastric glands and of the digestive mechanism in vertebrates.  相似文献   

7.
The relationship between cell proliferation and enzyme activity in intestinal metaplasia of the human stomach was studied using a combined method of [3H]thymidine autoradiography and alkaline phosphatase histochemistry on the same section. Three types of intestinal metaplasia were observed depending on variations in both enzymatic activity and isotope labelling. One type shows alkaline phosphatase-positive cells along the entire length of the glands with [3H]thymidine-labelled cells localized only at the bottom of the glands, resembling the duodenum. In another type of intestinal metaplasia, alkaline phosphatase-positive cells are present on the surface and/or upper half of the glands with mitotically active cells occupying the lower part of the glands. The third variety of intestinal metaplasia is characterized by the absence of alkaline-phosphatase activity and [3H]thymidine-labelled cells present in an extended zone in the lower half of the glands. Differences in labelling patterns of [3H]thymidine and the activity of marker enzyme in various types of intestinal metaplasia seem to reflect variations in cell differentiation during intestinalization of gastric mucosa.  相似文献   

8.
We have previously identified cells containing the enzyme nitric oxide (NO) synthase (NOS) in the human gastric mucosa. Moreover, we have demonstrated that endogenous and exogenous NO has been shown to decrease histamine-stimulated acid secretion in isolated human gastric glands. The present investigation aimed to further determine whether this action of NO was mediated by the activation of guanylyl cyclase (GC) and subsequent production of cGMP. Isolated gastric glands were obtained after enzymatic digestion of biopsies taken from the oxyntic mucosa of healthy volunteers. Acid secretion was assessed by measuring [(14)C]aminopyrine accumulation, and the concentration of cGMP was determined by radioimmunoassay. In addition, immunohistochemistry was used to examine the localization of cGMP in mucosal preparations after stimulation with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). SNAP (0.1 mM) was shown to decrease acid secretion stimulated by histamine (50 microM); this effect was accompanied by an increase in cGMP production, which was histologically localized to parietal cells. The membrane-permeable cGMP analog dibuturyl-cGMP (db-cGMP; 0.1-1 mM) dose dependently inhibited acid secretion. Additionally, the effect of SNAP was prevented by preincubating the glands with the GC inhibitor 4H-8-bromo-1,2,4-oxadiazolo[3,4-d]benz[b][1,4]oxazin-1-one (10 microM). We therefore suggest that NO in the human gastric mucosa is of physiological importance in regulating acid secretion. Furthermore, the results show that NO-induced inhibition of gastric acid secretion is a cGMP-dependent mechanism in the parietal cell involving the activation of GC.  相似文献   

9.
B. Morris    E. D. Steel 《Journal of Zoology》1967,152(3):257-267
The stomach of the hedgehog is a simple sac-like structure, and is divisible into three main regions based upon the histological structure of the gastric glands.
Peptic cells containing prominent Bowie positive granules are present at the bases of the rudimentary gastric glands at birth. A mucinogen component persists in these cells until about three weeks after birth.
Oxyntic cells differentiate from a non-mucoid cell type, they are far less numerous than petic cells throughout the suckling period.
Pepsin assays on the fundic mucosa reveal that pepsin is present in considerable amounts at nine days of age, and that near-adult levels are attained by about the end of the fourth week. Gastric pH declines during the suckling period, from near neutrality at birth to generally between 3.0 and 4.0 during the fourth and fifth weeks. Proteolytic digestion of antibody is delayed not through lack of enzyme but because the hydrogen ion concentration is generally inadequate for its action.
Evidence is presented to support the suggestion that the cessation of antibody absorption in the hedgehog and the rat is brought about, initially at least, by changes in the secretory activity of the gut, rather than by changes in the absorptive intestinal epithelium.  相似文献   

10.
In rabbit stomach, gastric lipase activity level was found to increase from birth to 30 days old (weaning), and then decreased. In contrast, pepsin activity only appeared between 30 to 45 days old, and increased till to the adult level. It was observed that maturation of gastric glands in cardial mucosa was a downward elongation process from the mitotic cell pool. These mitotic cells were always found in the neck of the gastric glands, corresponding to the bottom of the gland at 6 days old and to the mid-zone of the gland in adult. Location of rabbit gastric lipase (RGL) cells in cardial glands varied with age and was found along the pit of the gastric glands at 6 days old. The extent of this cellular location decreased with age, whereas a second RGL cell zone appeared below the mitotic cell area at 18 and 30 days old. At 45 days old, the pepsinogen cells appeared in the bottom of the gland, and consequently the RGL cells were located in the mid-zone of the gastric glands, between mitotic cells (neck of the gland) and pepsinogen cells (lower part of the gland). Ultrastructural study of cardial gastric glands revealed different morphologies of the secretion granules in the cells along the gastric glands. In 6-day-old rabbits, secretory granules were found uniformly electron dense in the bottom of the glands and were RGL-labeled by the immunogold technique. In the medium part of the glands, granules appeared biphasic, with a clear and a dense part, and RGL labeling was confined to the electron-dense part.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
The genus Cryptosporidium includes many common parasites infecting animals and humans, and is a major cause of diarrheal illness worldwide. The biology of gastric Cryptosporidium spp., including replication in the stomach, has not been well documented. This study evaluated the viability of Cryptosporidium andersoni sporozoites in gastric environments after excystation and examined the endogenous development and histopathological changes in the stomachs of infected mice, using a novel type of C. andersoni. Sporozoites were affected by low pH (61.6% viability after 3h at pH2.0). Electron microscopy revealed developmental parasites on the gastric foveolae but not on the surface of the gastric mucosa. Histopathological examinations at 1, 2, 4 and 12 weeks p.i. uncovered three different lesions. The gastric mucosa of foveolae filled with parasites was extended and the amount of neutral mucopolysaccharide at the mucosal surface was decreased with the first type of lesion. The gastric mucosa was atrophied, some gastric glands were disrupted and the amount of acid mucopolysaccharide at the mucosal surface was increased with the second type. Finally, the gastric mucosa was slightly extended and goblet cells were present in the gastric mucosa, indicating intestinal metaplasia, in the third type. No parasites were detected in these areas with increased acidic mucin and indications of metaplasia. The results suggest that C. andersoni parasites could not survive in acidic environments for a long period before invading host cells and preferentially develop in neutral sites of the gastric mucosa, resulting in histopathological changes and chronic shedding of oocysts.  相似文献   

15.
Summary In the gastric mucosa of two teleost species, the perch (Perca fluviatilis) and the catfish (Ameiurus nebulosus) three endocrine cell types were found, located predominantly between the mucoid cells of the gastric mucosa. A fourth cell type is present in the gastric glands of catfish. Each cell type was defined by its characteristic secretory granules. Type-I cells were predominant in both fish. These cells contained round or oval granules with a pleomorphic core. The average diameter of granules was 400 nm for the perch and 270 nm for the catfish. Type-II cells of both species displayed small, highly osmiophilic granules about 100 nm in diameter. The secretory granules of type-III cells (260 nm in the perch and 190 nm in the catfish) were round or slightly oval in shape and were filled with a finely particulate electron-dense material. Type-IV cells of the catfish were found in the gastric glands only. Their cytoplasm was filled with homogeneous, moderately electron-dense granules averaging 340 nm in diameter. The physiological significance of these different morphological types of gastric endocrine cells requires further investigation.  相似文献   

16.
Glycoprotein hormone alpha-subunit in human stomach   总被引:2,自引:0,他引:2  
To demonstrate the immunoreactive alpha-subunit of human chorionic gonadotropin (hCG) or glycoprotein hormones in non-neoplastic gastric mucosa, and to clarify the nature and significance of alpha-subunit-immunoreactive cells, immunohistochemical studies were performed on gastric mucosa using polyclonal antibodies for hCG alpha and beta, hLH beta, hFSH beta, hTSH beta, and gastrin, and a monoclonal antibody for hCG alpha. Surgically resected stomachs were classified as follows: nearly normal (Group A); antral gastritis (Group B); fundic gastritis with pseudopyloric glands (Group C); and intestinal metaplasia (Group D). Cells immunoreactive for the alpha-subunit were present in the pyloric glands and to a lesser extent in the fundic glands (Groups A and B). Almost all alpha-subunit-immunoreactive cells were nonreactive for the beta-subunits of the four glycoprotein hormones. alpha-subunit-immunoreactive cells corresponded to gastrin-containing cells in the pyloric glands, but were unrelated to gastrin in the fundic glands. In fundic gastritis, alpha-subunit-immunoreactive cells appeared to increase (Group C), and many hyperplastic foci were observed in atrophic glands with hyperplasia of the argyrophilic cells (Groups C and D). Isolated hCG alpha or the alpha-subunit of glycoprotein hormones may be present in the endocrine cells of gastric mucosa, and alpha-subunit-immunoreactive cells in the fundic glands seem to proliferate in fundic gastritis.  相似文献   

17.
Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented <0.1% of cells in the CGG gastric glands and 22–32% of cells in the proper gastric glands of the mucosa lining the stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus.  相似文献   

18.
The secretory cells of the oesophagogastric tract of the Eurasian toad, Bufo viridis, were examined using standard histochemical methods and lectin histochemistry. Two goblet cell types were found in the oesophageal epithelium, differing in their morphology and the histochemical features of the secretory granules. These contained mainly acidic glycoconjugates, both sulphated and carboxylated, and a small amount of pepsinogen. Type I goblet cells contained stable class-III mucosubstances, which were absent in Type II. No pluricellular oesophageal glands were found. The oesophagogastric junction had a superficial epithelium similar to that of the oesophageal epithelium, with alveolar pluricellular glands, secreting stable class-III mucins, and few oxynticopeptic cells. The gastric mucosa presented secretory cells both in the surface epithelium and in the gastric glands. Superficial and foveolar cells produced neutral mucins with Gal1,3GalNAc residues. Neck cells, oxynticopeptic cells and endocrine cells were found in the gastric glands. Neck cells produced stable class-III mucosubstances. A functional gradient was observed in the oxynticopeptic cells from the oral to the aboral fundus, with a decrease in pepsinogen secretion towards the aboral fundus and a possible increase in HCl secretion. In the pyloric mucosa, the oxynticopeptic cells disappeared and the glands produced only neutral mucins, without stable class-III mucosubstances.  相似文献   

19.
Helicobacter pylori attaches via lectins, carbohydrate binding proteins, to the carbohydrate residues of gastric mucins. Guinea-pigs are a suitable model for a H. pylori infection and thus the carbohydrate composition of normal and H. pylori infected gastric mucosa was investigated by lectin histochemistry. The stomach of all infected animals showed signs of an active chronic gastritis in their mucosa, whereas no inflammation was present in the control animals. The corpus–fundus regions of the controls showed heterogeneous WGA, SNA-I, UEA-I and HPA binding in almost all parts of the gastric glands. While these lectins labelled the superficial mucous cells and chief cells heterogeneously, the staining of the parietal cells was limited to WGA and PHA-L. Mucous neck cells reacted heterogeneously with UEA-I, HPA, WGA and PHA-L. In the antrum, the superficial mucous cells and glands were stained by WGA, UEA-I, HPA, SNA-I or PHA-L. WGA, UEA-I, SNA-I and HPA labelled the surface lining cells strongly. The mucoid glands reacted heterogeneously with WGA, UEA-I, HPA, SNA-I and PHA-L. In both regions, the H. pylori infected animals showed similar lectin binding pattern as the controls. No significant differences in the lectin binding pattern and thus in the carbohydrate composition between normal and H. pylori infected mucosa could be detected, hence H. pylori does not induce any changes in the glycosylation of the mucosa of the guinea-pig. This unaltered glycosylation is of particular relevance for the sialic acid binding lectin SNA-I as H. pylori uses sialic acid binding adhesin for its attachment to the mucosa. As sialic acid binding sites are already expressed in the normal mucosa H. pylori can immediately attach via its sialic acid binding adhesin to the mucosa making the guinea-pig particularly useful as a model organism.This work is dedicated to Professor B. Tillmann on the occasion of his 65th birthday  相似文献   

20.
Summary The distribution of lysozyme in normal gastric and duodenal mucosa was studied by light- and electronmicroscopic immunocytochemical techniques (direct enzyme-labeled antibody method).In the duodenal mucosa, lysozyme was found in the Paneth cells and the epithelial cells of Brunner's glands. Electron-microscopically, lysozyme was found in rough endoplasmic reticulum and perinuclear spaces, which were assumed to be protein-synthesizing organelles, and also in the secretory granules of Paneth cells. Additionally, lysozyme was detected in the stomach in mucinous granules and in some parts of the rough endoplasmic reticulum within the epithelial cells of the pyloric glands, the mucous neck cells of the fundic glands, and in several surface epithelial cells of the plyoric and fundic regions.This suggests that some quantity of lysozyme in gastrointestinal secretion originates from the gastric and duodenal glands, and that it acts as a defense mechanism in the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号