首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang SL  Tseng WN  Liang TW 《Biodegradation》2011,22(5):939-948
Two chitosanases (CHSA1 and CHSA2) were purified from the culture supernatant of Acinetobacter calcoaceticus TKU024 with squid pen as the sole carbon/nitrogen source. The molecular masses of CHSA1 and CHSA2 determined by SDS-PAGE were approximately 27 and 66 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of CHSA1 and CHSA2 were (pH 6, 50°C, pH 4–10, <90°C) and (pH 7, 60°C, pH 6–11, <70°C), respectively. CHSA1 and CHSA2 had broad pH and thermal stability. CHSA1 and CHSA2 were both inhibited by EDTA and were inhibited completely by 5 mM Mn2+. CHSA1 and CHSA2 degraded chitosan with DD ranging from 60 to 98%, and also degraded some chitin. The most susceptible substrate was 60% deacetylated chitosan. Furthermore, TKU024 culture supernatant (1.5% SPP) incubated for 5 days has the most reducing sugars (0.63 mg/ml). With this method, we have shown that shellfish wastes may have a great potential for the production of bioactive materials.  相似文献   

2.
A chitinase- and protease-producing bacterium was isolated and identified as Bacillus cereus TKU006. The better condition on our tests for protease and chitinase production was found when the culture was shaken at 25 degrees C for 2 days in 25 mL of medium containing 2% shrimp shell powder (w/v), 0.1% K(2)HPO(4), and 0.05% MgSO(4).7H(2)O. The molecular masses of TKU006 protease and chitinase determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis were approximately 39 and 35 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU006 protease and chitinase were 9, 50 degrees C, 3-11, 50 degrees C and 5, 40 degrees C, 3-11, 60 degrees C, respectively. TKU006 protease was inhibited completely by EDTA, indicating that the TKU006 protease was a metalloprotease. The TKU006 protease and chitinase retained 61%, 60%, 73%, and 100% and 60%, 60%, 71%, and 96% of its original activity in the presence of 2% Tween 20, 2% Tween 40, 2% Triton X-100, and 1 mM SDS, respectively. The antioxidant activity of TKU006 culture supernatant was determined through the scavenging ability on DPPH with 70% per milliliter. In conclusion, the novelties of the TKU006 protease and chitinase include its high stability to the surfactants and pH. Besides, with this method, we have shown that marine wastes can be utilized to generate a high-value-added product and have revealed its hidden potential in the production of functional foods.  相似文献   

3.
Serratia marcescens TKU011, a protease- and chitosanase-producing bacterium, the optimized condition for protease and chitosanase production was found after the media were heated at 121 °C for 120 min and the culture was shaken at 25 °C for 5 days in 100 mL of medium containing 1% squid pen powder (SPP) (w/v), 0.1% K2HPO4, and 0.05% MgSO4. An extracellular metalloprotease with novel properties of solvent stable, and alkaline was purified from the culture supernatant of S. marcescens TKU011 with squid pen wastes as the sole carbon/nitrogen source. The enzyme was a monomeric protease with a molecular mass of 48–50 kDa by SDS–PAGE and gel filtration chromatography. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU011 protease were 8, 50 °C, pH 5–11, and <40 °C, respectively. Besides protease and chitosanase, with this method, deproteinization of squid pen for β-chitin, the production of peptide and reducing sugar may be useful for biological applications.  相似文献   

4.
A protease-producing bacterium was isolated and identified as Chryseobacterium taeanense TKU001. An extracellular metalloprotease with novel properties of solvent- and surfactant-stable was purified from the culture supernatant of C. taeanense TKU001 with shrimp shell wastes as the sole carbon/nitrogen source. The optimized condition for protease production was found when the culture was shaken at 37 degrees C for 3 days in 50 mL of medium containing 0.5% shrimp shell powder (SSP) (w/v), 0.1% K2HPO4, and 0.05% MgSO4.7H2O. Two extracellular proteases (FI and FII) were purified and characterized, and their molecular weights, pH and thermal stabilities were determined. The molecular masses of TKU001 protease FI and FII determined by SDS-PAGE and gel filtration were approximately 41 kDa and 75 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU001 protease FI were 8, 60 degrees C, pH 6-9, and 60 degrees C, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU001 protease FII were 7, 60 degrees C, pH 7-9, and 50 degrees C, respectively. TKU001 protease FI and FII were both inhibited completely by EDTA, indicating that the TKU001 protease FI and FII were metalloproteases. TKU001 protease FI and FII retained more than 75% of its original protease activity after preincubation for 10 days at 4 degrees C in the presence of 25% most tested organic solvents. Additionally, the TKU001 protease FI retained 79%, 80%, and 110% of its original activity in the presence of 2% Tween 20, 2% Tween 40, and 2% Triton X-100, respectively. However, at the same condition, the activity of TKU001 protease FII retained 100%, 100%, and 121% of its original activity, respectively. This is the first report of C. taeanense being able to use shrimp shell wastes as the sole carbon/nitrogen source for proteases production. The novelties of the TKU001 protease include its high stability to the solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis.  相似文献   

5.
Wang SL  Chen SJ  Wang CL 《Carbohydrate research》2008,343(7):1171-1179
A chitinase (CHT1) and a chitosanase (CHS1) were purified from the culture supernatant of Pseudomonas sp. TKU015 with shrimp shell wastes as the sole carbon and nitrogen source. The optimized conditions of this new species strain (Gen Bank Accession Number EU103629) for the production of chitinases were found to be when the culture was shaken at 30 degrees C for 3 days in 100 mL of medium (pH 8) containing 0.5% shrimp shell powder (SSP) (w/v), 0.1% K2HPO4, and 0.05% MgSO(4).7H2O. The molecular weights of CHT1 and CHS1 determined by SDS-PAGE were approximately 68 kDa and 30 kDa, respectively. The optimum pH, optimum temperature, pH stability, and the thermal stability of CHT1 and CHS1 were pH 6, 50 degrees C, pH 5-7, <50 degrees C and pH 4, 50 degrees C, pH 3-9, <50 degrees C, respectively. CHT1 was inhibited completely by Mn2+ and Fe2+, and CHS1 was inhibited by Mn2+, Cu2+, and PMSF. CHT1 was only specific to chitin substrates, whereas the relative activity of CHS1 increased when the degree of deacetylation of soluble chitosan increased.  相似文献   

6.
A chitosanase and a protease were purified from the culture supernatant of Serratia sp. TKU016 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of the chitosanase and protease determined by SDS–PAGE were approximately 65 and 53 kDa, respectively. The chitosanase was inhibited completely by Mn2+, but the protease was enhanced by all of tested divalent metals. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase and protease were (pH 7, 50°C, pH 6–7, <50°C) and (pH 8–10, 40°C, pH 5–10, <50°C), respectively. SDS (2 mM) had stimulatory effect on TKU016 protease activity. The result demonstrates that TKU016 protease is SDS-resistant protease and probably has a rigid structure. Besides, TKU016 culture supernatant (2% SPP) incubated for 2 days has the highest antioxidant activity, the DPPH scavenging ability was about 76%. With this method, we have shown that shrimp shell wastes can be utilized and it’s effective in the production of enzymes, antioxidants, peptide and reducing sugar, facilitating its potential use in biological applications and functional foods.  相似文献   

7.
A nattokinase was purified from the culture supernatant of Pseudomonas sp. TKU015 with shrimp shell wastes as the sole carbon/nitrogen source. The molecular masses of TKU015 nattokinase determined by SDS-PAGE and gel filtration were approximately 21 and 24 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU015 nattokinase were 7, 50 °C, pH 4–11, and less than 50 °C, respectively. TKU015 nattokinase was inhibited completely by PMSF, indicating that the TKU015 nattokinase was serine protease. The results of peptide mass mapping showed that two tryptic peptides of the nattokinase were identical to a chitin binding protein from Bacillus cereus ATCC 14579 (GenBank accession number gi30020946) with 23% sequence coverage. With this method, Pseudomonas sp. TKU015 produces a nattokinase/fibrinolytic enzyme and may be considered as a new source for thrombolytic agents.  相似文献   

8.
A chitinase (CHT), a chitosanase (CHS) and a protease (PRO) were purified from the culture supernatant of Serratia sp. TKU020 with squid pen as the sole carbon/nitrogen source. The molecular masses of CHT, CHS and PRO determined by SDS-PAGE were approximately 65 kDa, 55 kDa and 55 kDa, respectively. CHT and CHS were inhibited by Mn2+, EDTA and PRO was inhibited by Mg2+, EDTA. The antioxidant activity of TKU020 culture supernatant was 78% (DPPH scavenging ability). N-Acetylglucosamine (GlcNAc) and N-acetyl chitobiose (GlcNAc)2 were also produced from the culture supernatant by using TKU020 strain fermentation. The maximum production of GlcNAc and (GlcNAc)2 was 1.3 mg/mL and 2.7 mg/mL, respectively, after 4 days of fermentation. With this method, we have shown that squid pen wastes can be utilized and it is effective in the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides, facilitating its potential use in industrial applications and functional foods.  相似文献   

9.
A protease-producing bacterium, strain TKU012, was isolated from infant vomited milk and identified as Lactobacillus paracasei subsp paracasei. Strain TKU012 produced protease when it was grown in a medium containing squid pen powder of marine waste. An extracellular protease was purified from culture supernatant by DEAE-Sepharose and Sephacryl S-100 chromatography. A protease, purified 77-fold to homogeneity in an overall yield of 11%, has a molecular weight of about 49 kDa estimated by SDS-PAGE. The protease was maximally active at pH 10 and 60 degrees C and showed substrate specificity to casein and gelatin. The protease retains 21% and 91% activity in the presence of Tween 20 (2% w/v) and SDS (2mM), respectively. The enzyme activity was reduced in the presence of PMSF and showed 23% sequence coverage rate with metalloprotease of Serratia marcescens. This is the first report of extracellular proteases purified from lactobacilli.  相似文献   

10.
A fungus with protease and chitinase activities was isolated from the soil. It has been identified as Aspergillus fumigatus Fresenius TKU003. A. fumigatus TKU003 produced proteases and chitinases when it was grown in a medium containing shrimp and crab shell powder (SCSP) of marine waste. An extracellular protease was purified from the culture supernatant of A. fumigatus TKU003. The molecular weight of TKU003 protease was 124 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The pI for TKU003 protease was 8.3. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU003 protease was pH 8, 40 °C, 6–10, and 50 °C, respectively. The activity of the enzyme was strongly inhibited by PMSF. TKU003 serine protease, same as most other serine proteases of A. fumigatus, belongs to protease with alkaline pI. The unique characteristics of TKU003 protease is its high molecular weight.  相似文献   

11.
We have developed a culture system for efficient production of chitosanase by Bacillus sp. TKU004. TKU004 was cultivated by using squid pen powder as the sole carbon/nitrogen source. The effects of autoclave treatments of the medium on the production of chitosanase were investigated. Autoclave treatment of squid pen powder for 45 min remarkably promoted enzyme productivity. When the culture medium containing an initial squid pen powder concentration of 3% was autoclaved for 45 min, the chitosanase activity was optimal and reached 0.14-0.16 U/mL. In addition, extracellular surfactant-stable chitosanase was purified from the TKU004 culture supernatant. The antioxidant activity of TKU004 culture supernatant was determined through the scavenging ability of DPPH, with 70% per mL. With this method, we have shown that marine wastes can be utilized efficiently through prolonged autoclave treatments to generate a high value-added product, and have revealed its hidden potential in the production of functional foods.  相似文献   

12.
A lipase-producing bacterium was isolated and identified as Pseudomonas monteilii TKU009. A lipase (F2) and lipase-like materials (F1) were purified from the culture supernatant of P. monteilii TKU009 with soybean powder as the sole carbon/nitrogen source. The molecular mass of F1 and F2 was estimated to be 44 kDa by SDS-PAGE and gel filtration. The optimum pH, optimum temperature, and pH and thermal stabilities of F2 were 7, 40°C, 8–11, and 50°C; and of F1 were 6, 40°C, 6–7, and 50°C, respectively. F2 was completely inhibited by EDTA and slightly by Mg2+, Fe2+, Mn2+, and SDS. F1 was completely inhibited by EDTA and Fe2+ and strongly by Zn2+, Mn2+, Ca2+, Mg2+, and SDS. The activities of both the enzymes were enhanced by the addition of non-ionic surfactants Triton X–100 and Tween 40, especially for F1. F2 preferably acted on substrates with a long chain (C10–C18) of fatty acids, while F1 showed a broad spectrum on those with chain length of C4–C18. The marked activity of F2 in organic solvents makes it an ideal choice for application in a water-restricted medium including organic synthesis. Li-June Ming is a visiting Professor at the National Cheng Kung University.  相似文献   

13.
A chitosanase was purified from the culture supernatant of Serratia marcescens TKU011 with shrimp shell wastes as the sole carbon/nitrogen source. Zymogram analysis revealed the presence of chitosanolytic activity corresponding to one protein, which was purified by a combination of ion-exchange and gel-filtration chromatography. The molecular weight of the chitosanase was 21 kDa and 18 kDa estimated by SDS–PAGE and gel-filtration, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase were 5, 50 °C, pH 4–8, and <50 °C, respectively. The chitosanase was inhibited completely by EDTA, Mn2+, and Fe2+. The results of peptide mass mapping showed that three tryptic peptides of the chitosanase were identical to a chitin-binding protein Cbp21 from S. marcescens (GenBank accession number gi58177632) with 63% sequence coverage.  相似文献   

14.
Using fishery-processing wastes of squid pen powder (SPP) as the sole carbon and nitrogen (C/N) source, Serratia marcescens TKU011 produced prodigiosin. The culture was incubated in 50 mL of medium in an Erlenmeyer flask (250 mL) containing 1.5% SPP at 30 °C for 1 day and then changed to 25 °C for 2 more days. The culture broth had high prodigiosin (0.978 mg/mL). S. marcescens TKU011 grown under illumination conditions in a shaking culture exhibited higher prodigiosin production than when grown under dark conditions contrary to previous reports. The culture supernatant reduced surface tension of water, and the surfactant activity increased when prodigiosin production increased. In this study, the fishery-processing waste, squid pen, was used to produce prodigiosin at greater quantities than reported in other studies, and we found that the prodigiosin had a novel property of insecticidal activity. This method has the potential for developing mass production of prodigiosin.  相似文献   

15.
TKU010 was isolated from infant vomited milk and identified as Lactobacillus paracasei subsp. paracasei. TKU010 had desirable properties concerning its ability to withstand adverse conditions in the gastrointestinal tract. The hydrolysate of casein enhanced the growth of TKU010 most obviously (17.20-18.25 OD(660)), followed by the hydrolysate of SPP (16.00-15.06 OD(660)). Incubating with SPP, both the culture supernatant of TKU010 on the first day and the fourth day showed inhibitory activities on E. coli BCRC13086, F. oxysporum BCRC32121 and A. fumigatus BCRC30099. TKU010 culture supernatant (1% SPP) incubated for 3 days has high antioxidant activity; the DPPH scavenging ability was 75% per ml. Thus, TKU010 could be preferably used as a starter to produce fermented milk with possibly interesting organoleptic properties. Besides, we have shown that squid pen wastes can be utilized to generate a high value-added product, and have revealed its hidden potential in the production of biocontrol agents and functional foods.  相似文献   

16.
Two extracellular chitinases (FI and FII) were purified from the culture supernatant of Pseudomonas aeruginosa K-187. The molecular weights of FI and FII were 30,000 and 32,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 60,000 and 30,000, respectively, by gel filtration. The pIs for FI and FII were 5.2 and 4.8, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of FI were pH 8, 50 degrees C, pH 6 to 9, and 50 degrees C; those of FII were pH 7, 40 degrees C, pH 5 to 10, and 60 degrees C. The activities of both enzymes were activated by Cu2+; strongly inhibited by Mn2+, Mg2+, and Zn2+; and completely inhibited by glutathione, dithiothreitol, and 2-mercaptoethanol. Both chitinases showed lysozyme activity. The purified enzymes had antibacterial and cell lysis activities with many kinds of bacteria. This is the first report of a bifunctional chitinase/lysozyme from a prokaryote.  相似文献   

17.
Using squid pen powder (SPP) as the sole C/N source, Paenibacillus sp. TKU023 produced exopolysaccharides (EPS) and antioxidant. With medium containing 1.5% SPP, 0.1% K(2)HPO(4), and 0.05% MgSO(4)·7H(2)O, pH 7.23, the culture was incubated at 37°C in liquid (50 mL/250 mL) for five days. The resultant culture supernatant had higher EPS productivity (4.55 g/L). The crude EPS were isolated by centrifugation, methanol precipitation and deproteinization. The characterization of the EPS demonstrated that it was mainly composed of glucose and maltose. In addition, the culture supernatant incubated for four days by using baffled base flask showed the strongest antioxidant activities and the highest total phenolic content, but maximum EPS production was found at the fifth day by using flat base flask. The production of two invaluable environmental-friendly biomaterials (EPS and antioxidant) is unprecedented. Besides, the use of SPP (waste) is green that made the whole process more valuable and attractive.  相似文献   

18.
The antioxidant activity of the culture supernatant of Serratia ureilytica TKU013 with squid pen as the sole carbon/nitrogen source was assessed by three methods, and the phenolic contents were assayed. The supernatant with the highest antioxidant activity was further purified by liquid–liquid partition, revealing the ethyl acetate extract exhibited the strongest antioxidant activity and the highest total phenolic content. Eight fractions were retrieved from silica gel column chromatography of this extract, designated F1–F8. F4 was found to possess the strong antioxidative activity and the highest total phenolic content and also exhibited strong cytotoxic activities against two different tumoural cell lines. A new compound (Serranticin) with antioxidant and antitumor activity was obtained from F4. The structure of Serranticin is analogous to that of siderophores (hexacoordinated catecholamine), which are iron chelators. As such, Serranticin has the potential for use as a deferration agent in various iron overload diseases.  相似文献   

19.
AIMS: To determine characteristics of the extracellular enzyme activity of Kytococcus sedentarius on human callus. METHODS AND RESULTS: A concentrate of a continuous culture supernatant fluid of K. sedentarius, which had callus-degrading activity, was subjected to a series of chromatographic purification procedures. The enzyme activity was found to be attributable to two proteases. These were capable of degrading both native callus and extracted keratin polypeptides and were purified to homogeneity, as shown by SDS-PAGE with silver staining. The enzymes P1 and P2 were 30 kDa and 50 kDa in size with isoelectric points of 4.6 and 2.7, respectively. The optimum conditions for callus-degrading activity were 40 degrees C, pH 7.1 for P1 and 50 degrees C, pH 7.5 for P2. P2 displayed increased activity in the presence of 800 mmol l(-1) NaCl and both enzymes were inhibited by PMSF (1 mmol(-1) Phenylmethylsulphoryl fluoride) and 1 mmol l(-1) EDTA. The main enzyme cleavage sites were Lys-Trp, Val-Lys, Gly-Asp and Asp-Arg, as determined after incubation of P1 and P2 with the beta-chain of insulin. CONCLUSIONS: K. sedentarius produces two extracellular enzymes that independently degrade natural, insoluble human callus. Both enzymes are serine proteases and have cleavage preference sites that are present in a range of human keratins. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification, in K. sedentarius cultures, of two enzymes which can degrade human callus strengthens the hypothesis that this organism is responsible for the pitting in human epidermis observed in pitted keratolysis. These enzymes may be of commercial use in the biodegradation of a range of keratin polymers, biological washing powders and in the treatment of unwanted callus on human skin.  相似文献   

20.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号