首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Activated carboxylase activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), as well as photosynthetic rates were measured for 42 species of freshwater and marine macrophytes. While the carboxylase activity varied greatly among the species investigated (0.2–12.5 mol CO2 mg–1 chlorophyll min–1), the submersed freshwater plants showed significantly lower activities than emergent, floating leaved or secondary submersed forms. The variability in photosynthetic rates correlated with the carboxylase activity only for the marine macroalgae, and their photosynthesis to carboxylase activity ratios were close to 1. These plants also had a consistently high inorganic carbon transport capability, and it is suggested that ribulose-1,5-bisphosphate carboxylase/oxygenase activity is an important internal factor regulating the photosynthetic capacity within this plant group where, apparently, the internal CO2 concentration is high and photorespiration is suppressed. Among the freshwater forms, it appears that their much lower inorganic carbon transport ability, rather than their carboxylase activity, limits the photosynthetic process.  相似文献   

2.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans Synechococcus PCC 6301) was used to generate novel enzymes in Escherichia coli. Residues in C-terminal loop 6 of the / barrel structure of the large subunit were changed. Replacement of valine 331 with alanine caused a 90% reduction in V max but did not alter the enzyme's relative specificity towards either of its gaseous substrates, CO2 and O2. However replacement of alanine 340 with glutamate decreased the enzyme's specificity for CO2 but had no significant effect on either the K m for ribulose-1,5-bisphosphate or CO2 or on V max. In contrast replacing a small cassette of residues 338-341 produced a small increase in the specificity factor.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - CABP 2-carbox-yarabinitol-1,5-bisphosphate We thank Karen Moore for the statistical analysis of the specificity factors. We acknowledge helpful discussions with Jim Pitts and Richard Pickersgill. This work was aided by the invaluable technical assistance of Iain Major.  相似文献   

3.
J. R. Evans 《Planta》1986,167(3):351-358
Photosynthesis in two cultivars of Triticum aestivum was compared with photosynthesis in two lines having the same nuclear genomes but with cytoplasms derived from T. boeoticum. The in-vitro specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) isolated from lines with T. boeoticum cytoplasm was only 71% of that of normal T. aestivum. By contrast, the RuBPCase activities calculated from the CO2-assimilation rate at low partial pressures of CO2, p(CO2), were the same for all lines for a given RuBPCase content. This indicates that both types of RuBPCase have the same turnover numbers in-vivo of 27.5 mol CO2·(mol enzyme)–1·s–1 (23°). The rate of CO2 assimilation measured at normal p(CO2), p a =340 bar, and high irradiance could be quantitatively predicted from the amount of RuBPCase protein. The maximum rate of RuBP regeneration could also predict the rate of CO2 assimilation at normal ambient conditions. Therefore, the maximum capacities for RuBP carboxylation and RuBP regeneration appear to be well-balanced for normal ambient conditions. As photosynthetic capacity declined with increasing leaf age, the capacities for RuBP carboxylation and RuBP regeneration declined in parallel.Abbreviations PAR photosynthetically active radiation - RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

4.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   

5.
Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mol O2·m–2·s–1 when leaves were transferred from 20 to 5°C for 30 min. Following cold-hardening at 5°C for ten weeks, photosynthesis recovered to 15.05 mol O2·m–2·s–1,comparable to the nonhardened rate at 20°C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5°C. The large increase in esterified phosphate in coldhardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5°C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.Abbreviations DHAP dihydroxyacetone phosphate - Fru6P fructose-6-phosphate - Fru 1,6BP fructose-1,6-bisphosphate - Fru1,6BPase fructose-1,6-bisphosphatase - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - CH cold-hardened rye grown at 5°C - NH nonhardened rye grown at 24°C - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - UDPGlc uridine 5-diphosphoglucose This work was supported by operating grants from the Swedish Natural Sciences Research Council to G.Ö. and P.G.  相似文献   

6.
Trypsin digestion reduces the sizes of both the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from the green alga Chlamydomonas reinhardtii. Incubation of either CO2/Mg2+ -activated or nonactivated enzyme with the transition-state analogue carboxyarabinitol bisphosphate protects a trypsin-sensitive site of the large subunit, but not of the small subunit. Incubation of the nonactivated enzyme with ribulosebisphosphate (RuBP) provided the same degree of protection. Thus, the very tight binding that is a characteristic of the transitionstate analogue is apparently not required for the protection of the trypsin-sensitive site of the large subunit. Mutant enzymes that have reduced CO2/O2 specificities failed to bind carboxyarabinitol bisphosphate tightly. However, their large-subunit trypsin-sensitive sites could still be protected. The K m values for RuBP were not significantly changed for the mutant enzymes, but the V max values for carboxylation were reduced substantially. These results indicate that the failure of the mutant enzymes to bind the transition-state analogue tightly is primarily the consequence of an impairment in the second irreversible binding step. Thus, in all of the mutant enzymes, defects appear to exist in stabilizing the transition state of the carboxylation step, which is precisely the step proposed to influence the CO2/O2 specificity of Rubisco.Abbreviations and Symbols CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - K c K m for CO2 - K o K m for O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation Paper No. 9313, Journal Series, Nebraska Agricultural Research DivisionThis work was supported by National Science Foundation grant DMB-8703820. We thank Drs. Archie Portis and Raymond Chollet for their helpful comments, and also thank Dr. Chollet for graciously providing CABP and [14C]CABP.  相似文献   

7.
Long-term chilling of young tomato plants under low light   总被引:8,自引:0,他引:8  
The properties of two Calvin-cycle key enzymes, i.e. stromal fructose-1,6-bisphosphatase (sFBPase) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were studied in the cultivated tomato (Lycopersicon esculentum Mill.) and in four lines of a wild tomato (L. peruvianum Mill.) from different altitudes. During chilling for 14 d at 10°C and low light, the activation energy (EA) of the reaction catalyzed by sFBPase decreased by 5–10 kJ·mol–1 inL. esculentum and the threeL. peruvianum lines from high altitudes. InL. peruvianum, no loss or only small losses of enzyme activity were observed during the chilling. Together with the change in EA, this indicates that the latter species is able to acclimate its Calvin-cycle enzymes to low temperatures. InL. esculentum, the chilling stress resulted in the irreversible loss of 57% of the initial sFBPase activity. Under moderately photoinhibiting chilling conditions for 3 d, theL. peruvianum line from an intermediate altitude showed the largest decreases in both the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and the in-vivo activation state of sFBPase, while the otherL. peruvianum lines showed no inhibition of sFBPase activation. Ribulose-1,5-bisphosphate carboxylase/oxygenase was isolated by differential ammonium-sulfate precipitation and gel filtration and characterized by two-dimensional electrophoresis. The enzyme fromL. esculentum had three isoforms of the small subunit of Rubisco, each with different isoelectric points. Of these, theL. peruvianum enzyme contained only the two more-acidic isoforms. Arrhenius plots of the specific activity of purified Rubisco showed breakpoints at approx. 17°C. Upon chilling, the specific activity of the enzyme fromL. esculentum decreased by 51%, while EA below the breakpoint temperature increased from 129 to 189 kJ·mol–1. In contrast, Rubisco from theL. peruvianum lines from high altitudes was unaffected by chilling. We tested several possibile explanations for Rubisco inactivation, using two-dimensional electrophoresis, analytical ultracentrifugation, gel filtration and inhibitor tests. No indications were found for differential expression of the subunit isoforms, proteolysis, aggregation, subunit disassembly, or inhibitor accumulation in the enzyme from chilledL. esculentum. We suggest that the activity loss in theL. esculentum enzyme upon chilling is the result of a modification of sulfhydryl groups or other sidechains of the protein.Abbreviations a.s.l. above sea level - Chl chlorophyll - DTT dithiothreitol - EA activation energy - FBP fructose-1,6-bisphosphate - Fv/Fm ratio of variable to maximum chlorophyll fluorescence - HL high light (500 mol photons·m–2·s–1) - LSU large subunit of Rubisco - ME 2-mercaptoethanol - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - sFBPase stromal fructose-1,6-bisphosphatase - SSU small subunit of Rubisco  相似文献   

8.
The kinetic parameters of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (EC 4.1.1.39) in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were determined by rapidly assaying the leaf extracts. The respective K m and V max values for carboxylase and oxygenase activities were significantly higher for wheat than for rice. In particular, the differences in the V max values between the two species were greater. When the net activity of CO2 exchange was calculated at the physiological CO2-O2 concentration from these kinetic parameters, it was 22% greater in wheat than in rice. This difference in the in-vitro RuBP-carboxylase/oxygenase activity between the two species reflected a difference in the CO2-assimilation rate per unit of RuBP-carboxylase protein. However, there was no apparent difference in the CO2-assimilation rate for a given leaf-nitrogen content between the two species. When the RuBP-carboxylase/oxygenase activity was estimated at the intercellular CO2 pressure from the enzyme content and kinetic parameters, these estimated enzyme activities in wheat and rice were similar to each other for the same rate of CO2 assimilation. These results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxylase content and conductance for a given leaf-nitrogen content.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic - PAR photosynthetically active radiation - RuBP ribulose-1,5-bisphosphate  相似文献   

9.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase were used to examine the relationship between CO2-assimilation rate, Rubisco carbamylation and activase content. Plants used were those members of the r1 progeny of a primary transformant with two independent T-DNA inserts that could be grown without CO2 supplementation. These plants had from < 1% to 20% of the activase content of control plants. Severe suppression of activase to amounts below 5% of those present in the controls was required before reductions in CO2-assimilation rate and Rubisco carbamylation were observed, indicating that one activase tetramer is able to service as many as 200 Rubisco hexadecamers and maintain wild-type carbamylation levels in vivo. The reduction in CO2-assimilation rate was correlated with the reduction in Rubisco carbamylation. The anti-activase plants had similar ribulose-1,5-bisphosphate pool sizes but reduced 3-phosphoglycerate pool sizes compared to those of control plants. Stomatal conductance was not affected by reduced activase content or CO2-assimilation rate. A mathematical model of activase action is used to explain the observed hyperbolic dependence of Rubisco carbamylation on activase content.Abbreviations CA1P 2-carboxyarabinitol-1-phosphate - Pipa intercellular, ambient partial pressure of CO2 - PGA 3-phospho-glycerate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SSU small subunit of Rubisco  相似文献   

10.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

11.
Temperature, activating metal ions, and amino-acid substitutions are known to influence the CO2/O2 specificity of the chloroplast enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. However, an understanding of the physical basis for enzyme specificity has been elusive. We have shown that the temperature dependence of CO2/O2 specificity can be attributed to a difference between the free energies of activation for the carboxylation and oxygenation partial reactions. The reaction between the 2,3-enediolate of ribulose 1,5-bisphosphate and O2 has a higher free energy of activation than the corresponding reaction of this substrate with CO2. Thus, oxygenation is more responsive to temperature than carboxylation. We have proposed possible transition-state structures for the carboxylation and oxygenation partial reactions based upon the chemical natures of these two reactions within the active site. Electrostatic forces that stabilize the transition state of the carboxylation reaction will also inevitably stabilize the transition state of the oxygenation reaction, indicating that oxygenase activity may be unavoidable. Furthermore, the reduction in CO2/O2 specificity that is observed when activator Mg2+ is replaced by Mn2+ may be due to Mg2+ being more effective in neutralizing the negative charge of the carboxylation transition state, whereas Mn2+ is a transition-metal ion that can overcome the triplet character of O2 to promote the oxygenation reaction.Abbreviations CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - Kc Kmfor CO2 - Ko Kmfor O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - Vc V max for carboxylation - Vo V max for oxygenation  相似文献   

12.
B. Ranty  G. Cavalie 《Planta》1982,155(5):388-391
Extracts from sunflower leaves possess a high ribulose-1,5-bisphosphate (RuBP) carboxylase capacity but this enzyme activity is not stable. A purification procedure, developed with preservation of carboxylase activity by MgSO4, yielded purified RuBP carboxylase with high specific activity (40 nkat mg-1 protein). Measurement of kinetic parameters showed high Km values (RuBP, HCO 3 - ) and high Vmax of the reaction catalyzed by this sunflower enzyme; the results are compared with those obtained for soybean carboxylase. Enzyme characteristics are discussed in relation to stabilization and activation procedures and to the high photosynthesis rates of this C3 species.  相似文献   

13.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) not only catalyzes carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), but it can also act either as an epimerase or isomerase converting RuBP into xylulose-1,5-bisphosphate (XuBP) or 3-ketoarabinitol-1,5-bisphosphate (KABP), respectively, a process called misfire. XuBP is formed as a result of misprotonation at C3 of the RuBP-enediol. It is released from Rubisco active sites and accumulates in the reaction mixture. Increasing the amounts of CO2 or O2 decreases XuBP production. However, KABP synthesis, which has been proposed to be only a product due to C2 misprotonation of the RuBP-endiol, is dependent upon the presence of O2. KABP remains tightly bound to Rubisco active sites after its formation, causing the loss of Rubisco activity (fallover). The results suggest that the non-stabilized form of the peroxy-intermediate in the oxygenase reaction can be converted in a backreaction to KABP and molecular oxygen. The stabilization of the peroxy-intermediate due to the presence of Mn2+ instead of Mg2+ eliminates the formation of KABP.  相似文献   

14.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

15.
The short-term, in-vivo response to elevated CO2 of ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39) activity, and the pool sizes of ribulose 1,5-bisphosphate, 3-phosphoglyceric acid, triose phosphates, fructose 1,6-bisphosphate, glucose 6-phosphate and fructose 6-phosphate in bean were studied. Increasing CO2 from an ambient partial pressure of 360–1600 bar induced a substantial deactivation of RuBPCase at both saturating and subsaturating photon flux densities. Activation of RuBPCase declined for 30 min following the CO2 increase. However, the rate of photosynthesis re-equilibrated within 6 min of the switch to high CO2, indicating that RuBPCase activity did not limit photosynthesis at high CO2. Following a return to low CO2, RuBPCase activation increased to control levels within 10 min. The photosynthetic rate fell immediately after the return to low CO2, and then increased in parallel with the increase in RuBPCase activation to the initial rate observed prior to the CO2 increase. This indicated that RuBPCase activity limited photosynthesis while RuBPCase activation increased. Metabolite pools were temporarily affected during the first 10 min after either a CO2 increase or decrease. However, they returned to their original level as the change in the activation state of RuBPCase neared completion. This result indicates that one role for changes in the activation state of RuBPCase is to regulate the pool sizes of photosynthetic intermediates.Abbreviations and symbols A net CO2 assimilation rate - Ca ambient CO2 partial pressure - Ci intercellular CO2 partial pressure - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat catalytic turnover rate per RuBPCase molecule - PFD photon flux density (400 to 700 nm on an area basis) - PGA 3-phosphoglyceric acid - Pi orthophosphate - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

16.
J. R. Evans  R. B. Austin 《Planta》1986,167(3):344-350
The specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) in crude extracts of leaves from euploid, amphiploid and alloplasmic lines of wheat fell into high or low categories (3.75 or 2.70 mol·mg–1·min–1, 30°C). For the alloplasmic lines, where the same hexaploid nuclear genome was substituted into different cytoplasms, the specific activity of RuBPCase was consistent with the type of cytoplasm (high for the B and S cytoplasms and low for the A and D cytoplasms). There was no evidence from the euploid and amphiploid lines that small subunits encoded in different nuclear genomes influenced the specific activity. High specific activity was conferred by possession of the chloroplast genome of the B-type cytoplasm which encodes the large subunit of RuBPCase. All lines with a cytoplasm derived from the Sitopsis section of wheat, with the exception of Aegilops longissima and A. speltoides 18940, had RuBPCase with high specific activity. In contrast with the euploid lines of A. longissima, the alloplasmic line containing A. longissima cytoplasm from a different source had RuBPCase with high specific activity. The difference in specific activity found here in-vitro was not apparent in-vivo when leaf gas exchange was measured.Abbreviation RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

17.
N. W. Kerby  L. V. Evans 《Planta》1978,142(1):91-95
In order to isolate high yields of pyrenoids from the brown alga Pilayella littoralis it is necessary to pretreat them with 0.1% HgCl2 in sea water for 3 h. Without this pretreatment there is a substantial loss of pyrenoid ground substance and yields are low. Pyrenoid fractions of high purity have been obtained using silica sol gradients. A partial characterization has shown the pyrenoid to be proteinaceous and lacking chlorophyll. SDS polyacrylamide gel electrophoresis has shown that the majority of protein present is accounted for by two polypeptides which resemble the large and small subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39).Abbreviations DTT dithiothreitol - HEPES N-2-hydroxyethylniperazine N1-2-ethanesulfonic acid - PEG polyethylene glycol - PVPP polyvinylpolypyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate  相似文献   

18.
A rapid method to determine the CO2/O2 specificity factor of ribulose 1,5-bisphosphate carboxylase/oxygenase is presented. The assay measures the amount of CO2 and O2 fixation at varying CO2/O2 ratios to determine the relative rates of each reaction. CO2 fixation is measured by the incorporation of the moles of14CO2 into 3-phosphoglycerate, while O2 fixation is determined by subtraction of the moles of CO2 fixed from the moles of RuBP consumed in each reaction. By analyzing the inorganic phosphate specifically hydrolyzed from RuBP under alkaline conditions, the amount of RuBP present before and after catalysis by rubisco can be determined.  相似文献   

19.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) with an antisense gene directed against the mRNA of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit was used to determine the kinetic properties of Rubisco in vivo. The leaves of these plants contained only 34% as much Rubisco as those of the wild type, but other photosynthetic components were not significantly affected. Consequently, the rate of CO2 assimilation by the antisense plants was limited by Rubisco activity over a wide range of CO2 partial pressures. Unlike in the wild-type leaves, where the rate of regeneration of ribulose bisphosphate limited CO2 assimilation at intercellular partial pressures above 400 ubar, photosynthesis in the leaves of the antisense plants responded hyperbolically to CO2, allowing the kinetic parameters of Rubisco in vivo to be inferred. We calculated a maximal catalytic turnover rate, kcat, of 3.5+0.2 mol CO2·(mol sites)–1·s–1 at 25° C in vivo. By comparison, we measured a value of 2.9 mol CO2·(mol sites)–1·–1 in vitro with leaf extracts. To estimate the Michaelis-Menten constants for CO2 and O2, the rate of CO2 assimilation was measured at 25° C at different intercellular partial pressures of CO2 and O2. These measurements were combined with carbon-isotope analysis (13C/12C) of CO2 in the air passing over the leaf to estimate the conductance for transfer of CO2 from the substomatal cavities to the sites of carboxylation (0.3 mol·m–2·s–1·bar–1) and thus the partial pressure of CO2 at the sites of carboxylation. The calculated Michaelis-Menten constants for CO2 and O2 were 259 ±57 bar (8.6±1.9M) and 179 mbar (226 M), respectively, and the effective Michaelis-Menten constant for CO2 in 200 mbar O2 was 549 bar (18.3 M). From measurements of the photocompensation point (* = 38.6 ubar) we estimated Rubisco's relative specificity for CO2, as opposed to O2 to be 97.5 in vivo. These values were dependent on the size of the estimated CO2-transfer conductance.Abbreviations and Symbols A CO2-assimilation rate - gw conductance for CO2 transfer from the substomatal cavities to the sites of carboxylation - Kc, Ko Michaelis-Menten constants for carboxylation, oxygenation of Rubisco - kcat Vcmax/[active site] - O partial pressure of O2 at the site of carboxylation - pc partial pressure of CO2 at the site of carboxylation - pi intercellular CO2 partial pressure - Rd day respiration (non-photorespiratory CO2 evolution) - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Sc/o relative specificity factor for Rubisco - SSu small subunit of Rubisco - Vcmax, Vomax maximum rates of Rubisco carboxylation, oxygenation - * partial pressure of CO2 in the chloroplast at which photorespiratory CO2 evolution equals the rate of carboxylation  相似文献   

20.
The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase   总被引:1,自引:0,他引:1  
The substrate specificity factor, V cKo/VoKc, of spinach (Spinacia oleracea L.) ribulose 1,5-bisphosphate carboxylase/oxygenase was determined at ribulosebisphosphate concentrations between 0.63 and 200 M, at pH values between 7.4 and 8.9, and at temperatures in the range of 5° C to 40° C. The CO2/O2 specificity was the same at all ribulosebisphosphate concentrations and largely independent of pH. With increasing temperature, the specificity decreased from values of about 160 at 5° C to about 50 at 40° C. The primary effects of temperature were on K c [Km(CO2)] and V c [Vmax (CO2)], which increased by factors of about 10 and 20, respectively, over the temperature range examined. In contrast, K o [Ki (O2)] was unchanged and V o [Vmax (O2)] increased by a factor of 5 over these temperatures. The CO2 compensation concentrations () were calculated from specificity values obtained at temperatures between 5° C and 40° C, and were compared with literature values of . Quantitative agreement was found for the calculated and measured values. The observations reported here indicate that the temperature response of ribulose 1,5-bisphosphate carboxylase/oxygenase kinetic parameters accounts for two-thirds of the temperature dependence of the photorespiration/photosynthesis ratio in C3 plants, with the remaining one-third the consequence of differential temperature effects on the solubilities of CO2 and O2.Abbreviations RuBPC/O(ase) ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - CO2 compensation concentration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号