首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model of activation of muscle contraction has been applied to the crayfish isolated skeletal muscle fibre. The model is based on calcium diffusion and binding to specific regulatory sites in a sarcomere. Calcium ions activate interactions of contractile proteins and thus the generation of force. The model quantifies the relation between calcium released from intracellular stores and force elicited. Experimental tension records from isolated crayfish skeletal muscle fibres under voltage clamp conditions are analyzed. Model parameters were determined either via approximation of the onset of tension by the model solution or from the model based relations between the tension maximum, and depolarizing pulse length and amplitude. This allowed to determine time changes of free and bound calcium distribution in the sarcomere and the calcium release from terminal cisternae. The steady state calcium concentration at terminal cisternae showed S-shaped voltage dependence with saturation below approx. 10 mumol/l at positive membrane potentials.  相似文献   

2.
A model of calcium distribution in the sarcomere during activation of contraction was developed. It allows for diffusion and binding of calcium ions to various sarcoplasmic binding sites in the three dimensional spatial coordinate system. The model was used to analyze the influence of kinetic characteristic of binding processes on the temporal and spatial distribution of calcium in the sarcomere during activation of contraction by the action potential and by rectangular depolarizing pulses. The hypothesis concerning the calcium release control in the membrane of terminal cisternae was tested.  相似文献   

3.
A model of activation of muscle contraction has been proposed. It is based on calcium diffusion and binding to specific regulatory sites in a sarcomere. Calcium ions activate interactions of contractile proteins and thus the generation of force. The model quantifies the relation between calcium released from intracellular stores and the elicited force.  相似文献   

4.
In order to identify the physiological regulator of calcium dependent myosin light chain kinases of cardiac, skeletal, and smooth muscles, the effects of the three homologous calciproteins, calmodulin, troponin C, and parvalbumin, on the kinases isolated from bovine myocardium, rabbit skeletal muscle, and turkey gizzard were examined. Only calmodulin was effective in stimulating the cardiac, skeletal, or smooth muscle kinase; troponin C and parvalbumin exhibited no activation of any of the three kinases, even when examined at concentrations as high as 10-(5) M. It is concluded that calmodulin is the specific regulator of myosin light chain kinase in cardiac, skeletal, and smooth muscle.  相似文献   

5.
An effect of internal citrate ions on excitation-contraction coupling in skeletal muscle is described. The threshold for contraction was measured in rat extensor digitorum longus, (EDL), and soleus muscle fibers using a two microelectrode voltage clamp technique with either KCl-filled or K3 citrate-filled current electrodes. Contraction thresholds were stable for many minutes with KCl current electrodes. In contrast, thresholds fell progressively towards the resting membrane potential, by as much as -15 mV over a period of 10 to 20 min of voltage-clamp with citrate current electrodes. In addition, prepulse inhibition was suppressed, subthreshold activation enhanced and steady-state inactivation shifted to more negative potentials. Fibers recovered slowly from these effects when the citrate electrode was withdrawn and replaced with a KCl electrode. The changes in contraction threshold suggest that citrate ions act on the muscle activation system at an intracellular site, since the citrate permeability of the surface membrane is probably very low. An internal citrate concentration of 5 mM was calculated to result from citrate diffusion out of the microelectrode into the recording area for 20 min. 5 mM citrate added to an artificial cell lowered the free calcium concentration from 240 to 31 microM. It is suggested that citrate modifies excitation-contraction coupling either by acting upon an anion-dependent step in activation or by reducing the free calcium and/or free magnesium concentration in the myoplasm.  相似文献   

6.
During excitation–contraction coupling in skeletal muscle, calcium ions are released into the myoplasm by the sarcoplasmic reticulum (SR) in response to depolarization of the fibre’s exterior membranes. Ca2+ then diffuses to the thin filaments, where Ca2+ binds to the Ca2+ regulatory sites on troponin to activate muscle contraction. Quantitative studies of these events in intact muscle preparations have relied heavily on Ca2+-indicator dyes to measure the change in the spatially-averaged myoplasmic free Ca2+ concentration (Δ[Ca2+]) that results from the release of SR Ca2+. In normal fibres stimulated by an action potential, Δ[Ca2+] is large and brief, requiring that an accurate measurement of Δ[Ca2+] be made with a low-affinity rapidly-responding indicator. Some low-affinity Ca2+ indicators monitor Δ[Ca2+] much more accurately than others, however, as reviewed here in measurements in frog twitch fibres with sixteen low-affinity indicators. This article also examines measurements and simulations of Δ[Ca2+] in mouse fast-twitch fibres. The simulations use a multi-compartment model of the sarcomere that takes into account Ca2+’s release from the SR, its diffusion and binding within the myoplasm, and its re-sequestration by the SR Ca2+ pump. The simulations are quantitatively consistent with the measurements and appear to provide a satisfactory picture of the underlying Ca2+ movements.  相似文献   

7.
Mechanisms of calcium release in sarcoplasmic reticulum.   总被引:2,自引:0,他引:2  
G Inesi  N Malan 《Life sciences》1976,18(8):773-779
The involvement of Sarcoplasmic Reticulum (SR) in relaxation of skeletal muscle has been studied extensively since vesicular fragments of SR membrane were found in the microsomal fraction of muscle homogenates (1,2). It was shown that the isolated SR vesicles exhibit ATP dependent calcium transport in vitro, reducing the Ca2+ concentration in the medium to levels (3) and at rates (4,5) compatible with relaxation of myofibrils in physiological conditions (6).The question of calcium release, however, has been elusive for a long time. In this regard it is known that skeletal muscle SR is able to store an amount of calcium which is sufficient for activation of myofibrils. Therefore, it is simply assumed that upon membrane excitation calcium is released from SR, thereby raising the Ca2+ concentration in the myoplasm and initiating contraction.Recently various experiments were performed demonstrating that calcium release from SR can occur by different mechanisms of great interest and possibly of physiological relevance. These mechanisms will be discussed here.  相似文献   

8.
We measured the osmotic pressure of diffusible myoplasmic proteins in frog (Rana temporaria) skeletal muscle fibers by using single Sephadex beads as osmometers and dialysis membranes as protein filters. The state of the myoplasmic water was probed by determining the osmotic coefficient of parvalbumin, a small, abundant diffusible protein distributed throughout the fluid myoplasm. Tiny sections of membrane (3.5- and 12-14-kDa cutoffs) were juxtaposed between the Sephadex beads and skinned semitendinosus muscle fibers under oil. After equilibration, the beads were removed and calibrated by comparing the diameter of each bead to its diameter measured in solutions containing 3-12% Dextran T500 (a long-chain polymer). The method was validated using 4% agarose cylinders loaded with bovine serum albumin (BSA) or parvalbumin. The measured osmotic pressures for 1.5 and 3.0 mM BSA were similar to those calculated by others. The mean osmotic pressure produced by the myoplasmic proteins was 9.7 mOsm (4 degrees C). The osmotic pressure attributable to parvalbumin was estimated to be 3.4 mOsm. The osmotic coefficient of the parvalbumin in fibers is approximately 3.7 mOsm mM(-1), i.e., roughly the same as obtained from parvalbumin-loaded agarose cylinders under comparable conditions, suggesting that the fluid interior of muscle resembles a simple salt solution as in a 4% agarose gel.  相似文献   

9.
Zebrafish acquire the ability for fast swimming early in development. The motility mutant accordion (acc) undergoes exaggerated and prolonged contractions on both sides of the body, interfering with the acquisition of patterned swimming responses. Our whole cell recordings from muscle indicate that the defect is not manifested in neuromuscular transmission. However, imaging of skeletal muscle of larval acc reveals greatly prolonged calcium transients and associated contractions in response to depolarization. Positional cloning of acc identified a serca mutation as the cause of the acc phenotype. SERCA is a sarcoplasmic reticulum transmembrane protein in skeletal muscle that mediates calcium re-uptake from the myoplasm. The mutation in SERCA, a serine to phenylalanine substitution, is likely to result in compromised protein function that accounts for the observed phenotype. Indeed, direct evidence that mutant SERCA causes the motility dysfunction was provided by the finding that wild type fish injected with an antisense morpholino directed against serca, exhibited accordion-like contractions and impaired swimming. We conclude that the motility dysfunction in embryonic and larval accordion zebrafish stems directly from defective calcium transport in skeletal muscle rather than defective CNS drive.  相似文献   

10.
The major isotype of parvalbumin has been isolated from the skeletal muscle of the toad, Bufo bufo japonicus. Unlike the skeletal muscle of every frog so far examined (Rana esculenta, Rana temporaria, and Rana catesbeiana), which contains two major isotypes of parvalbumins, toad skeletal muscle has been shown to contain only one isotype, but the content of parvalbumin in toad skeletal muscle was similar to the sum of those of the two isotypes in skeletal muscles of frogs. This feature of toad skeletal muscle is advantageous to clarify the physiological role of parvalbumin. The relative molecular mass of toad parvalbumin was estimated to be 12,200 by SDS-polyacrylamide gel electrophoresis. The isoelectric point was determined to be 4.81 by polyacrylamide gel isoelectric focusing. The amino acid composition indicated that toad parvalbumin corresponds to bullfrog (R. catesbeiana) pI 4.97 parvalbumin, showing that toad parvalbumin is genetically an alpha-parvalbumin. It was also revealed by the amino acid composition that toad parvalbumin is distinctly different from any of the parvalbumins from frogs. The ultraviolet spectrum of toad parvalbumin is consistent with its amino acid composition. The ultraviolet difference spectrum of the Ca2+-loaded form vs. the metal-free form indicates that some Phe residues in the toad parvalbumin molecule are affected by a conformational change associated with Ca2+ binding. On electrophoresis in polyacrylamide gel in 14 mM Tris and 90 mM glycine, the metal-free and Mg2+-loaded forms of toad parvalbumin migrated twice as fast as the Ca2+-loaded form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The Frank-Starling relationship of the heart has, as its molecular basis, an increase in the activation of myofibrils by calcium as the sarcomere length increases. It has been suggested that this phenomenon may be due to myofilaments moving closer together at longer lengths, thereby enhancing the probability of favorable acto-myosin interaction, resulting in increased calcium sensitivity. Accordingly, we have developed an apparatus so as to obtain accurate measurements of myocardial interfilament spacing (by synchrotron X-ray diffraction) as a function of sarcomere length (by video microscopy) over the working range of the heart, using skinned as well as intact rat trabeculas as model systems. In both these systems, lattice spacing decreased significantly as sarcomere length was increased. Furthermore, lattice spacing in the intact muscle was significantly smaller than that in the skinned muscle at all sarcomere lengths studied. These observations are consistent with the hypothesis that lattice spacing underlies length-dependent activation in the myocardium.  相似文献   

12.
The effects of low intracellular free Mg2+ on the myoplasmic calcium removal properties of skeletal muscle were studied in voltage-clamped frog skeletal muscle fibers by analyzing the changes in intracellular calcium and magnesium due to membrane depolarization under various conditions of internal free [Mg2+]. Batches of fibers were internally equilibrated with cut end solutions containing two calcium indicators, antipyrylazo III (AP III) and fura-2, and different concentrations of free Mg2+ (25 microM-1 mM) obtained by adding appropriate total amounts of ATP and magnesium to the solutions. Changes in AP III absorbance were used to monitor [Ca2+] and [Mg2+] transients, whereas fura-2 fluorescence was mostly used to monitor resting [Ca2+]. Shortly after applying an internal solution containing less than 60 microM free Mg2+ to the cut ends of depolarized fibers most of the fibers exhibited spontaneous repetitive movements, suggesting that free internal Mg2+ might affect the activity of the sarcoplasmic reticulum (SR) calcium channels at rest. The spontaneous contractions generally subsided. In polarized fibers the maximal amplitude of the calcium transient elicited by a depolarizing pulse was about the same whatever the internal [Mg2+], but its decay after the end of the pulse slower in low [Mg2+]. In low [Mg2+] (less than 0.14 mM), the mean rate constant of decay obtained from fitting a single exponential plus a constant to the decay of the calcium transients was approximately 30% of its value in the control fibers (1 mM internal [Mg2+]). A model characterizing the main calcium removal properties of a frog skeletal muscle fiber, including the SR pump and the Ca-Mg sites on parvalbumin, was fitted to the decay of the calcium transients. Results of the fits show that in low internal [Mg2+] the slowing of the decay of the calcium transient can be well predicted by both a decreased rate of SR calcium uptake and an expected decreased resting magnesium occupancy of parvalbumin leading to a reduced contribution of parvalbumin to the overall rate of calcium removal. These results are thus consistent with the known properties of parvalbumin as a Ca-Mg buffer and furthermore suggest that in an intact portion of a muscle fiber, the activity of the SR calcium pump can be affected by the level of free Mg2+.  相似文献   

13.
The distribution of ryanodine receptor calcium-release channels over the terminal cisternae (TC) membrane of skeletal muscle fibres was examined by using immunogold electron microscopy. Two monoclonal antibodies (5C3 and 8E2) that bound to monomers of the ryanodine receptor protein on Western blots of SDS-polyacrylamide gels were used to locate calcium-release channels in longitudinal sections of rat sternomastoid and diaphragm fibres. Up to 21% of 5C3 binding on TC membranes was extra-junctional, compared with 46% for 8E2. Binding of 8E2 to the fibres was less than half that of 5C3, possibly because of steric shielding of the 8E2 antigenic site at the junction. The distances between neighbouring particles in clusters was 20-40 nm, i.e. the distance between subunits of the ryanodine receptor or between neighbouring foot structures. We suggest that, during activation, extra-junctional ryanodine receptors may release Ca2+ directly into the myoplasm, rather than into the restricted space of the triad junction.  相似文献   

14.
Radioautography has been used to localize 45Ca in isotopically labeled frog skeletal muscle fibers which had been quickly frozen during a maintained tetanus, a declining tetanus, or during the period immediately following a tetanus or a contracture. During a tetanus almost all of the myofibrillar 45Ca is localized in the region of the sarcomere occupied by the thin filaments. The amount varies with the tension being developed by the muscle. The movement of calcium within the reticulum from the tubular portion to the terminal cisternae during the posttetanic period has a half-time of about 9 sec at room temperature and a Q10 of about 1.7. Repolarization is not necessary for this movement. Evidence is given to support the notion that most calcium efflux from the cell occurs from the terminal cisternae into the transverse tubules.  相似文献   

15.
The zebrafish has proven to be a valuable model system for exploring skeletal muscle function and for studying human muscle diseases. Despite the many advantages offered by in vivo analysis of skeletal muscle in the zebrafish, visualizing the complex and finely structured protein milieu responsible for muscle function, especially in whole embryos, can be problematic. This hindrance stems from the small size of zebrafish skeletal muscle (60 μm) and the even smaller size of the sarcomere. Here we describe and demonstrate a simple and rapid method for isolating skeletal myofibers from zebrafish embryos and larvae. We also include protocols that illustrate post preparation techniques useful for analyzing muscle structure and function. Specifically, we detail the subsequent immunocytochemical localization of skeletal muscle proteins and the qualitative analysis of stimulated calcium release via live cell calcium imaging. Overall, this video article provides a straight-forward and efficient method for the isolation and characterization of zebrafish skeletal myofibers, a technique which provides a conduit for myriad subsequent studies of muscle structure and function.  相似文献   

16.
Existing models describing sarcomere assembly have arisen primarily from studies using cardiac muscle. In contrast to cardiac muscle, skeletal muscle differentiation is characterised by dramatic changes in protein expression, from non-muscle to muscle-specific isoforms before organisation of the sarcomeres. Consequently, little is understood of the potential influence of non-muscle cytoskeletal proteins on skeletal sarcomere assembly. To address this issue, transfectant (gamma33-B1) and control mouse C2 myoblasts were differentiated to form myotubes, and various stages of skeletal sarcomere assembly were studied. Organisation of non-muscle gamma-actin and co-localisation with sarcomeric alpha-actinin, an early marker of sarcomere assembly and a major component of Z lines, was noted. gamma-Actin was also identified in young myotubes with developing sarcomeric myofibrils in regenerating adult mouse muscle. Localisation of gamma-actin in a different area of the myotube to the muscle-specific sarcomeric alpha-actin also indicated a distinct role for gamma-actin. The effects of aberrant gamma-actin expression in other myoblast lines, further suggested a sequestering role for gamma-actin. These observations make the novel suggestion that non-muscle gamma-actin plays a role in skeletal sarcomere assembly both in vitro and in vivo. Consequently, a modified model is proposed which describes the role of gamma-actin in skeletal sarcomere assembly.  相似文献   

17.
In this study, the protein expression profile of extensor digitorum longous (EDL) and Soleus (SOL) muscles, representing fast- and slow-twitch skeletal muscles, respectively, was established using high resolution two-dimensional electrophoresis (2-DE). One protein spot was found uniquely expressed in EDL muscle. N-terminal sequence analysis identified the protein as parvalbumin. Parvalbumin is a high affinity calcium binding protein that regulates muscle contraction and relaxation. Our experiments revealed that parvalbumin expression in EDL muscle was down-regulated during aging. In addition, high-intensity exercise could reverse this age-related change. Soleus muscles do not normally express parvalbumin, but high-intensity exercise could ectopically induce its expression in both young and old SOL muscles. We have also confirmed our 2-DE findings by immunohistochemistry on muscle sections. Our results suggest that high-intensity training could be used to improve muscle functions during aging because parvalbumin play an important role in regulating skeletal muscle contraction and relaxation.  相似文献   

18.
Ever since the 1950s, muscle force regulation has been associated with the cross-bridge interactions between the two contractile filaments, actin and myosin. This gave rise to what is referred to as the "two-filament sarcomere model". This model does not predict eccentric muscle contractions well, produces instability of myosin alignment and force production on the descending limb of the force-length relationship, and cannot account for the vastly decreased ATP requirements of actively stretched muscles. Over the past decade, we and others, identified that a third myofilament, titin, plays an important role in stabilizing the sarcomere and the myosin filament. Here, we demonstrate additionally how titin is an active participant in muscle force regulation by changing its stiffness in an activation/force dependent manner and by binding to actin, thereby adjusting its free spring length. Therefore, we propose that skeletal muscle force regulation is based on a three filament model that includes titin, rather than a two filament model consisting only of actin and myosin filaments.  相似文献   

19.
A sensitive enzyme immunoassay for measurements of rat parvalbumin was established using antibodies raised in rabbits with parvalbumin purified from skeletal muscles. Antibodies in the antiserum were purified with a parvalbumin-coupled Sepharose column. The sandwich-type immunoassay system for parvalbumin was composed of polystyrene balls with immobilized purified antibodies and the same antibodies labeled with beta-D-galactosidase from Escherichia coli. The assay was highly sensitive and the minimum detection limit was 1 pg parvalbumin/tube. The assay did not cross-react with other calcium binding proteins, including human S-100a0 and S-100b proteins, rat 28-kDa calbindin-D, and bovine calmodulin. High concentrations of parvalbumin were observed in the skeletal muscles, especially in those composed of fast-twitch fibers, and in the diaphragm and tongue, but not in heart muscle. A relatively high concentration was estimated in the central nervous tissue. Parvalbumin was detected in the cerebral cortex and cerebellum of gestational 15-day fetuses. However, the levels of parvalbumin in the muscle tissues and central nervous tissue were very low in rats before 1 week of age. Thereafter, they increased sharply, reaching the adult levels by 5 weeks in most of the tissues. Parvalbumin concentrations in adult rat soleus muscle increased less than 20-fold within 10 days after transection of the ipsilateral sciatic nerve, while the concentrations in the extensor digitorum longus muscle did not change in the same period.  相似文献   

20.
The calcium release channel (CRC)/ryanodine receptor (RyRec) has been identified as the foot structure of the sarcoplasmic reticulum (SR) and provides the pathway for calcium efflux required for excitation-contraction coupling in skeletal muscle. The CRC has previously been reported to consist of four identical 565-kDa protomers. We now report the identification of a 12-kDa protein which is tightly associated with highly purified RyRec from rabbit skeletal muscle SR. N-terminal amino acid sequencing and cDNA cloning demonstrates that the 12-kDa protein from fast twitch skeletal muscle is the binding protein for the immunosuppressant drug FK506. In humans, FK506 binds to the 12-kDa FK506-binding protein (FKBP12) and blocks calcium-dependent T cell activation. We find that FKBP12 and the RyRec are tightly associated in skeletal muscle SR on the basis of: 1) co-purification through sequential heparin-agarose, hydroxylapatite, and size exclusion chromatography columns; 2) coimmunoprecipitation of the RyRec and FKBP12 with anti-FKBP12 antibodies; and 3) subcellular localization of both proteins to the terminal cisternae of the SR, and not in the longitudinal tubules of SR, in fast twitch skeletal muscle. The molar ratio of FKBP12 to RyRec in highly purified RyRec preparations is approximately 1:4, indicating that one FKBP12 molecule is associated with each calcium release channel/foot structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号