首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of labelled naloxone, morphine and (D-Ala2,D-Leu5)enkephalin (DADL) to oocyte membranes of the toad Bufo viridis was investigated. The opiate antagonist naloxone binds to the membranes much more effectively than morphine or DADL. The binding of [3H]naloxone is reversible and saturating. The bound [3H]naloxone is readily replaced by unlabelled naloxone or bremazocine (kappa-agonist), far less effectively by morphine (mu-agonist) and SKF 10.047 (sigma-agonist) and is not practically replaced by DADL (delta-agonist), beta-endorphin (epsilon-agonist) and other neuropeptides. Analysis of experimental results in Scatchard plots revealed two types of binding sites with a high (Kd = 15 nM) and low (Kd = 10(3) nM) affinity for naloxone. The number of sites responsible for the binding of naloxone possessing a high affinity is 16 pmol-/mg of oocyte homogenate protein, i.e., 20-50 times as great as in the toad or rat brain. Trypsin and p-chloromercurybenzoate decrease the binding of [3H]naloxone. The oocyte extract is capable of replacing the membrane-bound [3H]naloxone, on the one hand, and of inhibiting the smooth muscle contracture of the rabbit vas deferens, on the other. This inhibition is reversed by naloxone and can also be induced by bremazocine, but not by morphine, DADL and SKF 10.047. In all probability oocytes contain compounds that are similar to opiate kappa-agonists. It may also be possible that these compounds mediate their effects via specific receptors and are involved in the control over maturation of oocytes and early development of toad eggs.  相似文献   

2.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

3.
Y Sarne  A Kenner 《Life sciences》1987,41(5):555-562
Displacement from brain membranes of labeled opiates by low concentrations of enkephalins and of labeled enkephalins by low concentrations of opiates has been previously explained by the existence of a common high affinity site termed mu-1. An alternative interpretation of the same results is that the trough seen in the low concentration zone of the displacement curves represents cross binding of mu and delta opioid ligands to delta and mu receptors, respectively. In three sets of experiments with brain membranes, the size of the trough is shown to be dependent on the labeled ligand used: The ratio between the size of troughs seen with [3H]D-Ala, D-Leu enkephalin and with [3H]morphine varies with experimental conditions (storage of membranes at 4 degrees C for 72 h), with ratio of mu:delta receptors (e.g. in thalamus and cortex which are enriched in mu and delta sites, respectively) and with pretreatment of membranes with naloxonazine. These results can not be explained by a common high affinity site, but rather by binding of [3H]D-Ala, D-Leu enkephalin to mu and of [3H]morphine to delta opioid receptors.  相似文献   

4.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   

5.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   

6.
A variety of data support the existence of an opioid receptor complex composed of distinct but interacting mu cx and delta cx binding sites, where "cx" indicates "in the complex." The ability of subantinociceptive doses of [Leu5]enkephalin and [Met5]enkephalin to potentiate and attenuate morphine-induced antinociception, respectively, is thought to be mediated via their binding to the delta cx binding site. [D-Pen2,D-Pen5]Enkephalin also modulates morphine-induced antinociception, but has very low affinity for the delta cx binding site in vitro. In the present study, membranes were depleted of their delta ncx binding sites by pretreatment with the site-directed acylating agent, (3S,4S)-(+)-trans-N-[1-[2-(4-isothiocyanato)phenyl)-ethyl]-3-methy l-4- piperidyl]-N-phenylpropaneamide hydrochloride, which permits selective labeling of the delta cx binding site with [3H][D-Ala2,D-Leu5]enkephalin. The major findings of this study are that with this preparation of rat brain membranes: a) there are striking differences between the delta cx and mu binding sites; and b) both [D-Pen2,D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin exhibit high affinity for the delta cx binding site.  相似文献   

7.
A cystamine-enkephalin dimer, containing two molecules of [D-Ala2, Leu5] enkephalin cross-linked at the COOH-terminal leucine residue with cystamine, (NH2-CH2-CH2-S-)2, has been synthesized in order to examine directly the dimerization effect of an enkephalin molecule on the opiate receptor interactions. In a comparison of potencies against [3H]-[D-Ala2,D-Leu5] enkephalin (3H-DADLE) and [3H]-[D-Ala2,MePhe4,Gly-ol5] enkephalin (3H-DAGO) as delta and mu tracers, respectively, enkephalin dimer showed a very high affinity, especially for the delta opiate receptors. Dimer was almost threefold more potent than DADLE, which is one of the most utilized delta ligand to date. When the binding affinity of cystamine-dimer was compared with that of its reduced thiol-monomer, namely [D-Ala2,Leu5,cysteamine6] enkephalin, the increment in affinity was four to fivefold for both delta and mu receptors. The results strongly indicate that the dimeric enkephalin is more potent presumably due to the simultaneous interaction with the two binding sites of the opiate receptors.  相似文献   

8.
Kim KW  Kim SJ  Shin BS  Choi HY 《Life sciences》2001,68(14):1649-1656
In this study, receptor binding profiles of opioid ligands for subtypes of opioid delta-receptors were examined employing [3H]D-Pen2,D-Pen5-enkephalin ([3H]DPDPE) and [3H]Ile(5,6)-deltorphin II ([3H]Ile-Delt II) in human cerebral cortex membranes. [3H]DPDPE, a representative ligand for delta1 sites, labeled a single population of binding sites with apparent affinity constant (Kd) of 2.72 +/- 0.21 nM and maximal binding capacity (Bmax) value of 20.78 +/- 3.13 fmol/mg protein. Homologous competition curve of [3H]Ile-Delt II, a representative ligand for delta2 sites, was best fit by the one-site model (Kd = 0.82 +/- 0.07 nM). Bmax value (43.65 +/- 2.41 fmol/mg) for [3H]Ile-Delt II was significantly greater than that for [3H]DPDPE. DPDPE, [D-Ala2,D-Leu5]enkephalin (DADLE) and 7-benzylidenaltrexone (BNTX) were more potent in competing for the binding sites of [3H]DPDPE than for those of [3H]Ile-Delt II. On the other hand, deltorphin II (Delt II), [D-Ser2,Leu5,Thr6]enkephalin (DSLET), naltriben (NTB) and naltrindole (NTI) were found to be equipotent in competing for [3H]DPDPE and [3H]Ile-Delt II binding sites. These results indicate that both subtypes of opioid delta-receptors, delta1 and delta2, exist in human cerebral cortex with different ligand binding profiles.  相似文献   

9.
The effects of incubation of rat brain membranes at 0 degrees C on the specific binding of mu-ligands (naloxone, morphine) and the delta-ligand (D-Ala2, D-Leu5-enkephalin) to opiate receptors were studied. The effects of lyophilization of rat brain membranes on the properties of the opiate receptors were determined. The lyophilized brain membrane preparations revealed an extraordinarily high stability as compared to "wet" membranes. The experimental results suggest that morphine and D-Ala2, D-Leu5-enkephalin binding both to the high affinity and low affinity sites has different nature and point to the utility of stable and standard preparations of lyophilized membranes for the use in the receptor analysis of opiate and opioid peptides.  相似文献   

10.
Y Audigier  B Attali  H Mazarguil  J Cros 《Life sciences》1982,31(12-13):1287-1290
The guinea-pig striatum contains an apparent homogenous population of [3H]-etorphine high affinity sites (KD = 0.56 +/- 0.12 nM; Bmax = 267 +/- 47 fmoles/mg protein). The specific binding is completely abolished by 5 microM (D-Ala2, D-Leu5) enkephalin whereas an important residual binding is still present after the blockade of mu and delta sites. The binding properties of these residual sites are very similar to those of the benzomorphan sites characterized in rat brain and spinal cord. From the different binding properties of kappa and benzomorphan sites, the subdivision into kappa1 (kappa sites) and kappa2 (benzomorphan sites) is discussed.  相似文献   

11.
The binding properties of opioid receptors on isolated nerve terminals (neurosecretosomes) from bovine posterior pituitaries were characterized. Both [3H]etorphine and [3H]ethylketocyclazocine ([3H]EKC) showed high-affinity binding with complex binding isotherms, consistent with the presence of multiple classes of binding sites. [D-Ala2,D-Leu5]enkephalin showed no specific binding and failed to displace [3H]etorphine at high concentrations, indicating the absence of mu, delta, or benzomorphan (kappa 2) sites. Mathematical modelling of the data suggested the presence of three classes of binding sites. The first was of high affinity with Kd values of 0.9 and 2.0 nM for etorphine and EKC, respectively. The second class of sites appeared to bind etorphine with a KD of 150 nM, and EKC with extremely low affinity (unmeasurable binding). The third class of sites was characterized by KD values of 7 and 2 microM for etorphine and EKC, respectively. These results indicate that the nerve terminals of bovine posterior pituitary contain opioid binding sites of the kappa type. Furthermore, these binding sites appear heterogeneous, consisting of at least two and possibly more subtypes or states.  相似文献   

12.
Opioid receptors have been characterized in Drosophila neural tissue. [3H]Etorphine (universal opioid ligand) bound stereospecifically, saturably, and with high affinity (KD = 8.8 +/- 1.7 nM; Bmax = 2.3 +/- 0.2 pmol/mg of protein) to Drosophila head membranes. Binding analyses with more specific ligands showed the presence of two distinct opioid sites in this tissue. One site was labeled by [3H]dihydromorphine ([3H]DHM), a mu-selective ligand: KD = 150 +/- 34 nM; Bmax = 3.0 +/- 0.6 pmol/mg of protein. Trypsin or heat treatment (100 degrees C for 15 min) of the Drosophila extract reduced specific [3H]DHM binding by greater than 80%. The rank order of potency of drugs at this site was levorphanol greater than DHM greater than normorphine greater than naloxone much greater than dextrorphan; the mu-specific peptide [D-Ala2,Gly-ol5]-enkephalin and delta-, kappa-, and sigma-ligands were inactive at this site. The other site was labeled by (-)-[3H]ethylketocyclazocine ((-)-[3H]EKC), a kappa-opioid, which bound stereospecifically, saturably, and with relatively high affinity to an apparent single class of receptors (KD = 212 +/- 25 nM; Bmax = 1.9 +/- 0.2 pmol/mg of protein). (-)-[3H]EKC binding could be displaced by kappa-opioids but not by mu-, delta-, or sigma-opioids or by the kappa-peptide dynorphin. Specific binding constituted approximately 70% of total binding at 1 nM and approximately 50% at 800 nM for all three radioligands ([3H]etorphine, [3H]EKC, and [3H]DHM). Specific binding of the delta-ligands [3H][D-Ala2,D-Leu5]-enkephalin and [3H][D-Pen2,D-Pen5]-enkephalin was undetectable in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Binding characteristics of [3H]-etorphine and [3H]-ethylketocyclazocine are different in the lumbo-sacral spinal cord of guinea-pig. [3H]-etorphine binds to a single class of high affinity sites whereas [3H]-ethylketocyclazocine interacts with two components, a high affinity and a low affinity components. In the presence of 5 microM (D-Ala2, D-Leu5) enkephalin (DAL), the total high affinity sites can be resolved in two classes of sites, DAL sensitive sites (DALs sites) and DAL insensitive sites (DALI sites). In these conditions, [3H]-etorphine binding is completely abolished, and the binding capacity and properties of [3H]-etorphine correspond to the DALs sites. Pharmacological investigations indicated that DALI sites represent the kappa sites, whereas DALs sites closely correspond to benzomorphan sites described in rat brain and spinal cord. From these results, a new subclassification of "kappa" sites is proposed.  相似文献   

14.
Dimeric pentapeptide enkephalin: a novel probe of delta opiate receptors   总被引:1,自引:0,他引:1  
A dimeric pentapeptide enkephalin (DPE2) consisting of two molecules of [D-Ala 2, Leu 5] enkephalin linked at C-terminal leucine with ethylenediamine, (H-Tyr-D-Ala-Gly-Phe-Leu-NH-Ch2)2 is a bivalent ligand for the delta enkephalin receptors of rat brain and neuroblastoma-glioma hybrid (NG108-15) cells. This new enkephalin analog shows dramatically increased affinity in radioligand assays using whole brain membranes when delta but not mu specific radioligands are employed. When membranes from NG108-15 cells are used, the dimer shows greatly increased activity irrespective of the mu or delta specificity of the tracer. The dimer DPE2 shows a four-fold, "sodium shift" in its IC50 for competition with [3H]naloxone, suggestive of agonist behavior. Agonist activity was confirmed by demonstrating that DPE2 inhibits cyclic AMP production in prostaglandin E1 stimulated NG108-15 cells, and by demonstrating very high potency in the mouse vas deferens bioassay. DPE2 binds to the same delta sites as the delta-selective monomer [D-Ala2, D-Leu5] enkephalin, since the two ligands show complete crossdisplacement. Radiolabeled 3H-DPE2 shows a five-fold higher affinity constant, a 2.5-fold higher association rate constant, and a two-fold lower dissociation rate than the monomer. These results are consistent with the hypothesis that the dimeric pentapeptide enkephalin can bridge two delta receptors. This enkephalin dimer provides a valuable new probe of opiate receptors and their organization in cell membranes.  相似文献   

15.
The influence of Ca2+, Mg2+, Mn2+, Sr2+, La3+, Nd3+, Sm3+, Eu3+, and Gd3+ ions on the binding of labeled, stable enkephalin analogue, [3H-Tyr1, D-Ala2, D-Leu5]enkephalin, to opiate receptors of the rat brain membrane preparations has been investigated. The formation of the complex can be described by a scheme involving at least two independent binding sites. The high affinity site does not discriminate the divalent and trivalent metal ions: all examined cations enhanced the enkephalin affinity for this site. The ligand binding to the low affinity site is potentiated only by Mn2+, Mg2+, and lathanoides. The maximal concentration of the binding sites of the above two types is not affected by the cations. The increase in the ionic strength of the solution entails a decrease in the affinity of the ligand for the high affinity binding site. It is shown that the effect of both di- and trivalent metal cations on the [3H-Tyr1, D-Ala2, D-Leu3] enkephalin binding is mediated through one cation attachment site on the respective enkephalin receptor.  相似文献   

16.
[3H]U69,593 and [3H]ethylketazocine (mu + delta suppressed) binding was measured in homogenates of guinea-pig brain. Both ligands bind with high affinity to a single class of opioid sites. The relative equilibrium dissociation constant (KD) for [3H]U69,593 is 1.15 nM, while [3H]ethylketazocine has a KD value of 0.33 nM. Their respective maximum binding capacities are 4.49 and 4.48 pmol/g of wet tissue. Various mu-selective, delta-selective, kappa-selective, and nonselective opioids were tested in competition studies against the binding of [3H]U69,593 or [3H]ethylketazocine (in the presence of mu- and delta-blockers) to measure their relative affinity. [D-Ala2, MePhe4,Gly5-ol]enkephalin (mu-selective) has low affinity (600-3000 nM) and [D-Pen2,D-Pen5]enkephalin and [D-Ser2, Leu5, Thr6]enkephalin (delta-selective) have very low affinities (greater than 20,000 nM) at the sites labelled with [3H]U69,593 or [3H]ethylketazocine. On the other hand, unlabelled U69,593, U50,488H, and tifluadom (all three kappa-selective substances) display high affinity (1-5 nM) at those sites. Nonselective opioids, such as bremazocine, levorphanol, and ethylketazocine show similar affinities at the sites labelled with [3H]U69,593 and at the sites labelled with [3H]ethylketazocine. These data indicate that [3H]U69,593 is a selective high-affinity ligand for the same sites that are labelled with [3H]ethylketazocine (in the presence of mu- and delta-blockers) and that these are kappa-sites.  相似文献   

17.
Buprenorphine: High-Affinity Binding to Dorsal Spinal Cord   总被引:1,自引:0,他引:1  
The binding of the mixed opiate agonist-antagonist [3H]buprenorphine was compared with [3H]naloxone and [3H]dihydromorphine binding in membranes prepared from rat whole brain and dorsal spinal cord. Scatchard analysis of binding to whole brain yielded KD values close to 1.0 nM for all three 3H-ligands studied, although [3H]buprenorphine labelled five times as many binding sites. [3H]Naloxone and [3H]dihydromorphine bound to dorsal spinal cord with approximately the same affinity as to whole brain, although both 3H-ligands labelled fewer sites in the spinal cord. In contrast, Scatchard analysis of [3H]buprenorphine binding to spinal cord yielded curvilinear Scatchard plots, suggesting the presence of a very high-affinity (KD = 0.12 nM) binding site in addition to the high-affinity site (KD = 1.0 nM) present in the brain. Studies on the displacement of [3H]buprenorphine by opiates and D-Ala2,Met5-enkephalinamide supported the presence of two binding sites for this ligand in the spinal cord.  相似文献   

18.
Opiate binding in rat hearts: modulation of binding after hemorrhagic shock   总被引:7,自引:0,他引:7  
[3H] Diprenorphine was used to measure binding in sectioned rat hearts. Saturable binding for concentrations up to about 20 nM was obtained in the right atrium and ventricle. Unlabeled diprenorphine displaced bound [3H] diprenorphine most effectively in the right atrium (up to 55%), as compared to less than 27% in the right ventricle and the remaining parts of the heart. Scatchard analysis of the binding in the right atrium revealed cooperative binding. The delta agonist [D-Ala2,D-Leu3] enkephalin, the kappa agonist ethylketocyclazocine, and levorphanol, but not the mu agonist [D-ala2,MePhe4,Gly-(ol)5] enkephalin or dextrophan competed variably with [3H]diprenorphine for the binding in the right atrium and ventricle. A significant decrease in binding was observed in the right atrium (-66%) and ventricle (-45%) of hearts removed from rats 2 h after hemorrhagic shock; 24 h after shock, recovery of binding was found. This novel observation suggests that the diprenorphine binding sites in the heart may be physiologically active receptors, involved in regulation of peripheral cardiovascular processes.  相似文献   

19.
The synthetic peptide TPLVTLFK corresponding to the sequence 12–19 of β‐endorphin (referred to as octarphin) was found to bind to high‐affinity naloxone‐insensitive binding sites on membranes isolated from the rat brain cortex (Kd = 2.6 ± 0.2 nM ). The binding specificity study revealed that these binding sites were insensitive not only to naloxone but also to α‐endorphin, γ‐endorphin, [Met5]enkephalin, and [Leu5]enkephalin, as well. The [3H]octarphin specific binding with brain membranes was inhibited by unlabeled β‐endorphin (Ki = 2.4 ± 0.2 nM ) and a selective agonist of nonopioid β‐endorphin receptor decapeptide immunorphin SLTCLVKGFY (Ki = 2.9 ± 0.2 nM ). At the same time, unlabeled octarphin completely (by 100%) inhibited the specific binding of [3H]immunorphin with membranes (Ki = 2.8 ± 0.2 nM ). Thus, octarphin binds with a high affinity and specificity to nonopioid receptor of β‐endorphin on rat brain cortex membranes. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Cross-linking of beta-125I-endorphin to NG108-15 cell membranes labeled bands with molecular masses of 55, 35, and 25 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We applied several criteria to evaluate the relevance of these cross-linked bands to delta-opioid receptors, including selectivity, stereospecificity, affinity, G-protein coupling, down-regulation, and correlation with opioid receptor level in different well-characterized cell lines. Only the 25 kDa protein adequately fulfilled all these criteria. Thus, cross-linking to the 25-kDa band was selectively inhibited by ligands with delta-opioid affinity, but not by mu-opioid, kappa-opioid, or optically inactive opioid ligands or by non-opioid ligands. Based on inhibition of cross-linking, we calculated an affinity of [D-Ala2,D-Leu5]enkephalin binding to the 25-kDa and (Kd = 6 nM) that is similar to that reported for [D-Ala2,D-Leu5]enkephalin binding to NG108-15 membranes; this affinity decreased approximately 10-fold in the presence of Na+/guanyl-5'-yl imidodiphosphate. Chronic agonist treatment of NG108-15 cells reduced cross-linking to the 25-kDa band, but not to others, in a manner parallel to down-regulation of opioid receptors. Finally, the amount of the 25-kDa band was roughly proportional to the level of opioid receptors present in N18TG2, NS20Y, ST7-3, and ST8-4 cells. The 25-kDa band was absent in PC12h, NIH3T3, and C6BU1 cells as well as in liver, all of which had no detectable opioid binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号