首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The continuous production of gibberellic acid with immobilized mycelia of Gibberella fujikuroi was maintained over a hundred days in a tubular fixed-bed reactor. Free mycelium at the beginning of the storage phase was harvested from G. fujikuroi shake-flask culture and was immobilized by ionotropic gelation in calcium alginate beads.The continuous recycle production system consisted of a fixed-bed reactor, a container in which the culture medium was heated, stirred and aerated, and valves for sample withdrawal or reactant addition during the first 1320 h (55 days). A two-phase continuous extractor was then added for the last 960 hours (40 days). Free and immobilized mycelium shake-flask cultures with the same strain used in the continuous culture system were also realized to compare growth, maintenance and production parameters. The results show about the same gibberellic acid productivity in both free and immobilized mycelium shakeflask cultures: 0.384 and 0.408 mgGA3·gBiomass-1 ·day-1, respectively, whereas in the continuous system the gibberellic acid production is about twice as large for a similar biomass: 0.768 mgGA3·gBiomass-1·day-1. Several factors affecting the overall productivity of the immobilized systems were found to be: the quality and the quantity of mycelia in the biocatalyst beads and the immobilization conditions.  相似文献   

2.
Studies were conducted to elucidate the mechanism of action of 2-chloro-6-(trichloromethyl)pyridine or Technical N-SERVE on the nitrification process brought about byNitrosomonas europaea. The growth ofNitrosomonas was completely inhibited in the presence of 0.2 ppm N-SERVE while 1.0 ppm of the chemical was effective in the complete inhibition of ammonia oxidation by fresh cell suspensions. Cells stored at 4 C for a period of three days required somewhat higher concentrations (1.5 ppm) of N-SERVE for the complete inhibition of their ammonia oxidizing ability while the cytochrome oxidase of these cells was inhibited to the extent of 65 to 70 percent in the presence of a corresponding amount of N-SERVE. A 45 – 70 percent reversal of the inhibition of ammonia oxidation caused by N-SERVE was obtained by the addition of 6×10–4 M Cu++. An equivalent concentration of Cu++ was also effective for the complete reversal of the inhibition of cytochrome oxidase present in whole cells.Hydroxylamine oxidation by intactNitrosomonas cells was not affected by levels of N-SERVE ranging from 1 – 3 ppm. The cytochrome oxidase effective in hydroxylamine oxidation and present in cell-free extracts was not inhibited by even 100 ppm N-SERVE. Likewise, the hydroxylamine activating enzyme hydroxylamine cytochromec reductase was also not inhibited by such levels of the chemical. Raising the concentration to 170 ppm N-SERVE, however, caused a 90 percent inhibition of the enzyme.Although a 5×10–6 M concentration of allylthiourea completely inhibited ammonia oxidation byNitrosomonas cells, concentrations up to 10–3 M of this compound did not affect the cytochrome oxidase activity of whole cells or cell-free extracts. The inhibition of ammonia oxidation caused by 5×10–6 M allythiourea, unlike the inhibition by N-SERVE, could not be reversed by the addition of 6×10–4 M Cu++.Evidence is presented that the action of N-SERVE is on that component of cytochrome oxidase which is involved in ammonia oxidation.  相似文献   

3.
Summary To develop a method for culturing a large number of small-scale suspension cultures ofDrosophila melanogaster cells simultaneously, basic conditions were studied using a cell line GM2 and a gyratory shaker. Under gyration at more than 180 rpm, a majority (>80%) of the cells still remained as suspension and grew normally. Lower speed of gyration caused adhesion of the cells to a substratum. Furthermore, size of the culture vessels was found to affect the pattern of cell growth. Five- or 10-ml Erlenmeyer flasks gave satisfactory results, but the growth curves in 30-ml flasks differed from flask to flask and the saturation level was lower. Besides, the growth curves in the latter case were quite different depending on the volume of the medium. A preliminary experiment showed that the type of flask might affect the pattern of a growth curve. Initial cell densities has to be more than 6×104 cells per ml. Lower densities resulted in the longer doubling time or no increase in the cell number. Therefore the following conditions are recommended as a standard for gyration culture ofD. melanogaster cell, GM2: speed of gyration, 180 rpm; culture vessel, 5- or 10-ml Erlenmeyer flask of a certain type; initial cell density, 1 to 5×105 per ml. Both D20 and modified Schneider’s medium could be utilized as the medium.  相似文献   

4.
The continuous culture of Clostridium thermocellum, a thermophilic bacterium capable of producing ethanol from cellulosic material, is demonstrated at elevated hydrostatic pressure (7.0 MPa, 17.3 MPa) and compared with cultures at atmospheric pressure. A commercial limitation of ethanol production by C. thermocellum is low ethanol yield due to the formation of organic acids (acetate, lactate). At elevated hydrostatic pressure, ethanol:acetate (E/A) ratios increased >102 relative to atmospheric pressure. Cell growth was inhibited by approximately 40% and 60% for incubations at 7.0 MPa and 17.3 MPa, respectively, relative to continuous culture at atmospheric pressure. A decrease in the theoretical maximum growth yield and an increase in the maintenance coefficient indicated that more cellobiose and ATP are channeled towards maintaining cellular function in pressurized cultures. Shifts in product selectivity toward ethanol are consistent with previous observations of hydrostatic pressure effects in batch cultures. The results are partially attributed to the increasing concentration of dissolved product gases (H2, CO2) with increasing pressure; and they highlight the utility of continuous culture experiments for the quantification of the complex role of dissolved gas and pressure effects on metabolic activity.  相似文献   

5.
Luigi Tognoli 《Plant biosystems》2013,147(3-5):411-419
Abstract

Research on submerged culture of single cells of higher plants. — The author describes a method which allows to obtain submerged cultures of single cells of Phaseolus vulgaris and Nicotiana tabacum. The medium composition in macroelements in the culture on agar appears to effect to a great extent the ability of tissues to dissociate into single cells in the subsequent liquid culture. In this respect Heller's solution results to be more suitable than Gautheret's and Hildebrandt and Ri-ker's.

Cells are grown at 24 [ddot]C in 300 ml flasks containing 60 ml of broth on a rotary shaker at 220 rpm.

To prevent contaminations some antibacterial agents were added to cultures of Phaseolus vulgaris. Among these Penicillin and Neomycin were not tossic at 20 and 5 ppm concentrations respectively.

The presence of septa, which are observed also in largely vacuolate cells, seems to confirm the ability of single cells to divide.

The optimum 2,4-D concentration for growth decreases from 6 × 10-8 to 6 × 10-8 during successive liquid cultures, each of them being inoculated with on amount of the previous one. This fact, showing the adaptation of liquid cultures to decreasing concentrations of the growth hormone, is in agreement with previous observations in solid cultures by several authors.  相似文献   

6.
Aim: To identify the source of bisphenol A (BPA) [2,2′‐bis(4‐hydroxyphenyl) propane] in cultures of an antibiotic‐producing Bacillus sp. strain grown in polycarbonate flasks. Methods and Results: Although a culture of an antibiotic‐producing Bacillus sp. strain grown in a new, rinsed polycarbonate flask yielded BPA, duplicate cultures grown in thoroughly washed polycarbonate flasks did not. Cells of Escherichia coli strain C were grown in new polycarbonate flasks rinsed three‐times with 100 ml distilled H2O. BPA was only recovered from cultures grown in new polycarbonate flasks, but not from the autoclaved medium incubated in parallel. Conclusions: BPA was present in either Bacillus or E. coli cultures, probably due to its release from inadequately washed polycarbonate flasks. Standard autoclaving did not result in BPA appearance; microbial growth was required. Polycarbonate vessels for microbial cultures should be thoroughly washed to avoid the appearance of BPA in culture medium. Significance and Impact of the Study: This study rigorously demonstrates that the presence of BPA in culture medium was a consequence of microbial growth or metabolism in inadequately washed polycarbonate flasks. As BPA exhibits antimicrobial and oestrogenic activity, searches for novel drugs or production of recombinant chemotherapeutic agents could be derailed by the artefactual appearance of BPA.  相似文献   

7.
A pure culture of the obligately lithoautotrophic ammonia-oxidizer Nitrosomonas eutropha was grown in a laboratory-scale bioreactor with complete biomass retention. The air supply was supplemented with nitrogen dioxide (NO2; 25 or 50 ppm) or nitric oxide (NO; 25 or 50 ppm). Compared to cultures grown without these nitrogenous oxides, the addition of NO2 or NO to the culture resulted in a significant increase of the nitrification rate, specific activity of ammonia oxidation, growth rate, and maximum cell densities. In contrast, the growth yield slightly decreased in the presence of NO or NO2. Maximum cell densities of about 2 × 1010 cells ml–1 and a maximum nitrification rate of about 221 mmol NH4 + l–1 day–1 were obtained after 3 weeks in the presence of 50 ppm NO2. Furthermore, in the stationary phase about 50% of the nitrite produced was aerobically denitrified to dinitrogen (N2) and traces of nitrous oxide (N2O). When cells were supplemented with NO, a high rate of aerobic denitrification occurred only during the first days of the exponential growth phase. Received: 12 May 1997 / Accepted: 10 November 1997  相似文献   

8.
In order to evaluate TES and HEPES as a buffer system for cell culture, the proliferative capacities of cells of several mammalian cell lines in the medium buffered with either of these compounds were examined in cultures in stoppered and open flasks at high and low cell densities. When cultivated in stoppered flasks, cells grew equally well or even better in TES- and HEPES-buffered medium than in NaHCO3-buffered medium irrespective of cell culture density. In open flasks or Petri dishes in TES- or HEPES-buffered medium, however, the proliferative capacity of cells in low density cultures was limited. The inhibition of cell growth in the latter condition was restored (1) as the cell density of the cultures increased; (2) by feeding continuously the cultures with the gas produced by high density cultures; (3) by introducing a small amount of CO2 to the environment.These and other evidences presented suggest that, in agreement with the prevailing notions, CO2 is required by cells as an essential nutrient for growth, and that the desired level of CO2 in culture can be maintained efficiently by its production by even a small number of cells in culture as long as the culture flasks are stoppered. If flasks are not stoppered, however, the level of CO2 tension is determined by an equilibrium between the rate of its production by the cells and that of escape from culture to air, resulting in the observed failure in growth of cells in TES- and HEPES-buffered medium at low cell densities unless cultures were further supplemented with added CO2.  相似文献   

9.
The entomopathogenic fungus Isaria fumosorosea is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. Using 250-mL baffled flasks, culture volumes of 50, 100, 150, and 200 mL were grown in a shaker incubator at 350 rpm and 28°C. Dissolved oxygen (DO) was continuously monitored using a non-invasive oxygen monitoring system. Culture volumes of 50 mL maintained DO concentrations above 10% throughout the 3-day growth period and accumulated biomass and produced blastospores more rapidly (1.2×109 blastospores mL?1 in 2 days) than the other culture volumes tested. Dissolved oxygen was depleted in culture volumes of 100, 150, and 200 mL after 20.5, 16.8, and 13.5 h, respectively. The DO in 150 and 200 mL cultures remained exhausted (<3%) throughout the growth period resulting in significantly lower blastospore yields and increased hyphal growth. These results were used to establish oxygen levels (>20% DO) for I. fumosorosea growth in 100-L bioreactors resulting in blastospore production (1.1×109 blastospores mL?1 in 2 days) comparable to highly aerated, low volume shake flask cultures. In addition, maintaining higher DO levels resulted in increased blastospore production by cultures of I. fumosorosea grown on low-cost nitrogen sources (cottonseed meal and soy flour) that previously elicited excessive hyphal growth. These studies showed that oxygen availability is essential for significant yeast-like growth by I. fumosorosea cultures and that continuous monitoring of oxygen concentrations in shake flask cultures can be used to establish aeration conditions for bioreactors.  相似文献   

10.
The effect of various organic compounds on the growth of ammonia-oxidizing bacteria was examined.Nitrosococcus oceanus, a strongly halophilic bacterium, had a very low tolerance to organic matter compared with other organisms tested. Organic compounds scarcely affected the growth of theNitrosomonas strains whereas nitrite formation by bothNitrosococcus mobilis strains was inhibited by nearly all of the substances tested. The growth ofNitrosospira strain Nsp1 was enhanced more than 30% by acetate and formate, but not growth was detectable in the presence of pyruvate. On the contrary,Nitrosospira strain Nsp5 was stimulated only by pyruvate. Nitrite formation by the twoNitrosovibrio tenuis strains tested was similar. The growth of both strains was enhanced considerably by formate and glucose; acetate and, to a greater extent, pyruvate inhibited these bacteria.In batch culture, the energy efficiency of autotrophically grown ammonia-oxidizing bacteria varied from strain to strain. The cell yield of mixotrophically grown cultures, per unit of ammonia oxidized, was increased in comparison with autotrophic ones. No heterotrophic growth was detected.  相似文献   

11.
Molar growth yields for anaerobic growth of Aerobacter aerogenes in complex medium were much higher than for growth in minimal medium. In batch cultures the molar growth yield for glucose varied from 44 to 50 and Y ATP from 17.1 to 18.8. For glucose-limited chemostat cultures a value of 17.5 g/mole was found for Y ATP max and a value of 2.3 mmoles ATP/g dry weight h for the maintenance coeficient. Growth dependent pH changes were used to control the addition of fresh medium, containing excess of glucose to a continuous culture. The specific growth rate and the population density were dependent on the pH difference between the inflowing medium and the culture. At a value of 1.44 h-1 the molar growth yield for glucose was about 70 and Y ATP about 28.5. An-equation is presented, which gives the relation between theoretical and experimental Y ATP max values.  相似文献   

12.
CO2 accumulation in different culture systems containing embryogenic cell suspension cultures of cyclamen (Cyclamen persicum Mill.) was analyzed. In bioreactors equipped with a bubble-free or a bubble aeration system, CO2 mole fractions in the gas phase of more than 10% were determined whereas in Erlenmeyer flasks, CO2 mole fractions were below 2%. CO2 accumulation in bioreactors was severely growth inhibiting in comparison to the flasks. By removing CO2 in the aeration gas of a bubble-free aerated bioreactor, cell growth comparable to that in flasks was achieved. The regeneration ability of cell suspensions after being cultured in bioreactors with CO2 accumulation was better than those after culture in bioreactors without CO2 accumulation or in flasks. Received: 16 June 1998 / Revision received: 13 August 1998 / Accepted: 1 December 1998  相似文献   

13.
The diatoms Ditylum brightwellii and Nitzschia turgidula were grown in semi-continuous culture under various combinations of light intensity, temperature and daylength (photoperiod). Growth was strongly limited by light intensities below 0.03 cal/em2. min in both species. Above this intensity, light saturation of growth was rapidly approached in Nitzschia but only gradually so in Ditylum. The growth rate in continuous light was never significantly higher than with 16 hours of light plus 8 hours of dark. In Ditylum, continuous light above 0.03 cal/cm2. min caused a strong inhibition of growth at all temperatures. The chlorophyll concentration in the cells was greater the shorter the photopceriod. In cultures synchronised by different combinations of light intensity and photoperiod, cell division generally took place in the light. Synchrony was best under short photoperiods of bright light. Time courses are shown for chlorophyll synthesis and photosynthesis in synchronised cultures.  相似文献   

14.
Liquid cultures were successfully generated from cotyledons of two Sonneratia species, S. alba and S. caseolaris in Murashige and Skoog (MS) medium containing 0.1 μmol L−1 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious roots differentiated from cotyledons of S. alba. Proliferated cells were subcultured and a large volume of suspension cells was subsequently established in 100-mL flasks. All the cytokinins tested inhibited cell proliferation. After three years of culture, the potential to differentiate was tested as indicated by greening of the cells. Greening occurred when suspension cells were transferred to solid MS medium with and without 0.1 μmol L−1 2,4-D. Greening was stimulated by low concentrations of the weak auxins indolebutyric acid (IBA) and naphthaleneacetic acid (NAA) while 2,4-D stimulated late-stage greening. Abscisic acid (ABA) inhibited greening. Gibberellic acid (GA3) at 1.0 μmol L−1 stimulated callus greening and was not inhibitory even when tested at high concentrations. Cytokinins were inhibitory in combination with 0.1 μmol L−1 of either IBA or NAA. The cause of different effects of plant hormones on growth and differentiation was discussed. Small-scale liquid media and 24-well culture plates of solid media methods developed in this paper are suitable for the optimization of hormonal conditions for cell proliferation and differentiation.  相似文献   

15.
Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various flow conditions was determined for the red‐tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge. Cell division and mortality were determined by direct observation of isolated cells in 0.5‐mL cultures that were shaken to generate unquantified fluid shear. Larger volume cultures were exposed to quantified laminar shear in Couette‐flow chambers (0.004–0.019 N·m ? 2 shear stress) and to unquantified flow in shaken flasks. In these larger cultures, cell division frequency was calculated from flow cytometric measurements of DNA·cell?1. The mechanism by which shear inhibits net growth of L. polyedrum depends on shear stress level and growth conditions. Observations on the isolated cells showed that shaking inhibited growth by lowering cell division without increased mortality. Similar results were found for early exponential‐phase cultures exposed to the lowest experimental shear stress in Couette‐flow chambers. However, mortality occurred when a late exponential‐phase culture was exposed to the same low shear stress and was inferred to occur in cultures exposed to higher shear stresses. Elevated mortality in those treatments was confirmed using behavioral, morphological, and physiological assays. The results predict that cell division in L. polyedrum populations will be inhibited by levels of oceanic turbulence common for near‐surface waters. Shear‐induced mortality is not expected unless shear‐stress levels are unusually high or when cellular condition resembles late exponential/stationary phase cultures.  相似文献   

16.
Streptococcus lactis was grown with Aspergillus parasiticus in modified APT broth. Three inoculation procedures were used: (a) S. lactis was grown 3 days, then conidia of A. parasiticus were added (SLAP), (b) both organisms were added simultaneously (ST) and (c) A. parasiticus was grown 3 days, then S. lactis was added (APSL). At 3, 6 and 10 days of incubation, contents of flasks were analyzed for growth of each organism, pH of broth and aflatoxin content. S. lactis did not survive past 3 days when grown alone. In ST cultures, S. lactis grew to the same extent as in the control at 3 days; it remained viable at a low level through 10 days. In APSL cultures, S. lactis growth was inhibited at 3 days but the bacterium survived through 7 days (10 days of mold growth) at reduced numbers. At 3 days there were no appreciable differences in growth of A. parasiticus. At 6 days, in ST and SLAP cultures, growth of the mold was inhibited, while in the APSL culture growth increased over that in the control. At 10 days, growth of mold was somewhat increased over the control in all test conditions. The pH of broth in the A. parasiticus control and APSL culture was 6 at 3 days, dropped to 4.5–4.6 at 6 days and rose to 7 by 10 days. In ST and SLAP cultures, the pH was at 4.1 at 3 days and rose to pH 7 by 10 days. Aflatoxin (B1 plus G1) content was lowest at 3 days and increased at 6 days. Between 6 and 10 days two patterns were observed. In APSL and SLAP cultures, aflatoxin content decreased, while it increased in the ST culture. These patterns occurred when aflatoxin content was expressed on a total or per gram of dried mycelium basis. At 3 days the amounts of aflatoxin B1 and G1 were approximately equal. Between 3–6 days the amount of G1 increased more rapidly than that of B1. Between 6 and 10 days in the ST culture, the amount of G1 increased at a slower rate than that of B1 while in SLAP and APSL cultures, the amount of G1 decreased more rapidly than that of B1. When a different lot of the same medium was used, aflatoxin production was greatly reduced. The pH of broth at all test conditions rose through the incubation period.  相似文献   

17.
Summary Deficiency of inorganic phosphate caused the hyper production of invertase and the derepression of acid phosphatase in a continuous culture ofSaccharomyces carlsbergensis. The specific invertase activity was 40,000 enzyme units per g dry cell weight at a dilution rate lower than 0.05 h–1 with a synthetic glucose medium of which the molecular ratio of KH2PO4 to glucose was less than 0.006. This activity is eight fold higher than in a batch growth and 1.5 fold as much as the highest enzyme activity observed so far in a glucose-limited continuous culture.For the hyper production of invertase, it is necessary to culture the yeast continuously by keeping the Nyholm's conservative inorganic phosphate concentration at less than 0.2 m mole per g dry weight cell. The derepression of acid phosphatase brought about by phosphate deficiency, was similar in both batch and continuous cultures.Nomenclature D dilution rate of continuous culture (h–1) - Ei invertase concentration in culture (enzyme unit l–1) - Ep acid phosphatase concentration in culture (enzyme unit l–1) - P inorganic phosphate concentration in culture (mM) - S glucose concentration in culture (mM) - X cell concentration in culture (g dry weight cell l–1) Greek Letter specific rate of growth (h–1) Suffix f feed - 0 initial value  相似文献   

18.
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanella oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.  相似文献   

19.
Growth and spirolide production of the toxic dinoflagellate Alexandrium ostenfeldii (Danish strain CCMP1773) were studied in batch culture and a photobioreactor (continuous cultures). First, batch cultures were grown in 450 mL flasks without aeration and under varying conditions of temperature (16 and 22 °C) and culture medium (L1, f/2 and L1 with addition of soil extract). Second, cultures were grown at 16 °C in 8 L aerated flat-bottomed vessels using L1 with soil extract as culture medium. Finally, continuous cultures in a photobioreactor were conducted at 18 °C in L1 with soil extract; pH was maintained at 8.5 and continuous stirring was applied.This study showed that A. ostenfeldii growth was significantly affected by temperature. At the end of the exponential phase, maximum cell concentration and cell diameter were significantly higher at 16 °C than at 22 °C. In batch culture, maximum spirolide quota per cell (approx. 5 pg SPX 13-desMeC eq cell−1) was detected during lag phase for all conditions used. Spirolide quota per cell was negatively and significantly correlated to cell concentration according to the following equation: y = 4013.9x−0.858. Temperature and culture medium affected the spirolide profile which was characterized by the dominance of 13,19-didesMeC (29–46%), followed by SPX-D (21–28%), 13-desMeC (21–23%), and 13-desMeD (17–21%).Stable growth of A. ostenfeldii was maintained in a photobioreactor over two months, with maximum cell concentration of 7 × 104 cells mL−1. As in batch culture, maximum spirolide cell quota was found in lag phase and then decreased significantly throughout the exponential phase. Spirolide cell quota was negatively and significantly correlated to cell concentration according to the equation: y = 12,858x−0.8986. In photobioreactor, spirolide profile was characterized by higher proportion of 13,19-didesMeC (60–87%) and lower proportions of SPX-D (3–12%) and 13-desMeD (1.6–10%) as compared to batch culture.  相似文献   

20.
Photosynthetic characteristics of Cymbidium plantlet in vitro   总被引:17,自引:0,他引:17  
The photosynthetic characteristics of the Cymbidium plantlet in vitro cultured on Hyponex-agar medium with 2% sucrose were determined based on the measurements of CO2 concentration inside and outside of the culture vessels. The CO2 measurements were made with a gas chromatograph at a PPF (photosynthetic photon flux) of 35, 102 and 226 mol m-2 s-1, a chamber air temperature of 15, 25 and 35°C and a CO2 concentration outside the vessel of approximately 350, 1100 and 3000 ppm. The net photosynthetic rates were determined on individual plantlets and were expressed on a dry weight basis. The steady-state CO2 concentration during the photoperiod was lower inside the vessel than outside the vessel at any PPF greater than 35 mol m-2s-1 and at any chamber air temperature. The photosynthetic response curves relating the net photosynthetic rate, PPF, and CO2 concentration in the vessel and chamber air temperature were similar to those for Cymbidium plants grown outside and other C3 plants grown outside under shade. The results indicate that CO2 enrichment for the plantlets in vitro at a relatively high PPF would promote photosynthesis and hence the growth of chlorophyllous shoots/plantlets in vitro and that the plantlets in vitro would make photoautotrophic growth under environmental conditions favorable for photosynthesis.Abbreviations Cin CO2 concentration in the culture vessel - Cout CO2 concentration outside the vessel (in the culture room) - PPF photosynthetic photon flux  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号