首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fine immunogenetics of the chromosome 7 mouse minor histocompatibility (H) locusH-4 was investigated. Both class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL) and class II MHC-restricted helper T cells (TH) specifically reactive with H-4 antigens were isolated as clones and were used as genetic probes for classical backcross segregation analysis. Results of a four point cross indicated that theH-4 locus was actually comprised of two genes, that have been designatedH-46 andH-47. The former encodes antigens recognized by the TH and the latter encodes antigens recognized by the CTL. Moreover, these two genes could be separated from the gene pink-eyed dilution (p) which was found to be sandwiched between them. The functional significance of a minor H congenic strain differing by both TH-definedH-46 and CTL-definedH-47 was addressed using F1 complementation tests. Such studies indicated that immune responses against H-46 antigens was required for generation of H-47-specific CTL. Altogether, these results suggest selective presentation of different minor H gene products by class I or class II MHC proteins and that the minor H locusH-4 may have necessarily included both TH and CTL-defined genes because of requisite TH-CTL collaboration. Address correspondence and offprint requests to: D. C. Roopenian.  相似文献   

2.
The lytic activity of influenza virus-specific murine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), we found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.  相似文献   

3.
Cytotoxic T lymphocytes (CTL) activated in H-2 identical, Qa-1 disparate mixed leukocyte cultures recognize H-2-nonrestricted target antigens indistinguishable by strain or tissue distribution from serologically defined Qa-1 antigens. Cloned Qa-l-specific CTL define determinants encoded by four Qa-1 genotypes; we used anti-Qa-1 sera in antibody blocking experiments to determine if these determinants reside on molecules recognized by Qa-1-specific antibodies. Antisera containing Qa-1.1-specific and TL-specific antibodies blocked recognition of two CTL-defined determinants associated with Qa-1 a . Although both Qa-1 and TL molecules are expressed on activated T cells from appropriate strains, our studies indicated that the CTL recognized Qa-1, not TL. In addition, anti-Qa-1.2 serum inhibited CTL recognition of Qa-1b- and Qa-1c-encoded determinants. Qa-1 d target cells are unique in that they express determinants recognized by anti-Qa-1a CTL and by anti-Qa-1b CTL. Killing of Qa-1 d targets by anti-Qa-1a CTL was not inhibited by anti-Qa-1.1 serum, but was partially inhibited by anti-Qa-1.2 serum. Cytotoxicity of Qa-1 d cells by one anti-Qa-1b CTL clone was inhibited by both anti-Qa-1.2 and anti-Qa-1.1 sera, indicating close association of both serological determinants with the determinants recognized by the CTL. Thus, all of the CTL-defined Qa-1 determinants resided on molecules recognized by Qa-1-specific antibodies, but anti-Qa-1a CTL and Qa-1.1-specific antibodies did not have identical specificities.Abbreviations used in this paper B6 C57BL/6J - CAB concanavalin A stimulated lymphoblasts - CML cell-mediated lympholysis - CTL cytotoxic T lymphocyte - NMS normal mouse serum - MHC major histocompatibility complex - MLC mixed leukocyte culture - MR maximum release - SMDM supplemented Mishell-Dutton medium - SR spontaneous release  相似文献   

4.
In previous studies we have characterized H-2-restricted cytolytic T lymphocytes (CTL) type specific for Gross cell surface antigen-positive tumor cells induced by AKR/Gross leukemia viruses. The generation of such CTL was shown to be controlled by at least three genetic loci including H-2 and Fv-1. The Fv-1n phenotype was able to negate positive immune response gene effects of the H-2b haplotype. Fv-1n-mediated inhibition appeared to operated by allowing the early expression by normal cells of N-ecotropic leukemia virus-related antigens recognized by the antiviral CTL, perhaps via tolerance induction. In the present study, the expression of CTL-defined viral antigens by normal cells is further considered. Possible gene dosage effects by H-2 as well as Fv-1 and the other virus-related (V) genes, including proviral structural loci, were examined by comparison of a panel of congenic and F1 mice. These experiments indicated that the quantitative level of expression of CTL-defined viral antigens was primarily controlled by the Fv-1 genotype. Gene dosage effects were also observed for the V genes and, in some situations, for H-2. The importance of the early display of viral antigens by normal cells was underscored by the inability of those mice to generate specific antiviral CTL responses. Even strains expressing low levels of viral antigens, such as responder X nonresponder (AKR.H-2b:Fv-1b X AKR.H-2b)F1 mice, failed to respond. These results are discussed with respect to the inability of mice of the AKR background to respond with specific antiviral CTL generation and in light of their high incidence of spontaneous leukemia.  相似文献   

5.
F1 complementation results indicate that a new gene, putatively controlling a minor histocompatibility antigen, is closely linked to the minor histocompatibility gene,H-3, in the fifth linkage group of chromosome 2 of the mouse. This gene controls a product that was capable of inducing as well as acting as a target for cytotoxic lymphocytes (CTL). The lytic activity of CTL developed in B10.LP-H-3b mice specific for the product of the new gene of B10 was restricted to target cells possessing H-2Db antigens. This contrasts to the H-2Kb-restricted activity of H-3.1 specific CTL.  相似文献   

6.
We previously described a system in which H-2Kb-restricted C57BL/6 (B6) cytotoxic T lymphocytes (CTL) could be raised that were specific for tumors, such as the thymic lymphoma AKR.H-2b SL1, that were induced by endogenous AKR/Gross murine leukemia virus and that expressed the Gross cell surface antigen. In this study, certain normal lymphoid cells from AKR.H-2b mice were also found to express target antigens defined by such anti-AKR/Gross virus CTL. AKR.H-2b spleen, but surprisingly not thymus, cells stimulated the production of anti-AKR/Gross virus CTL when employed at either the in vivo priming phase or the in vitro restimulation phase of anti-viral CTL induction. This selective stimulation by spleen vs thymus cells was not dependent on the age of the mice over the range (3 to 28 wk) tested. Both AKR.H-2b spleen and thymus cells, however, were able to stimulate the generation of H-2-restricted B6 anti-AKR minor histocompatibility (H) antigen-specific CTL. Thus, AKR.H-2b spleen cells appeared to display the same sets (minor H and virus-associated) of cell surface antigens recognized by CTL as the AKR.H-2b SL1 tumor, whereas AKR.H-2b thymocytes were selectively missing the virus-associated target antigens, a situation analogous to that of cl. 18-5, a variant subclone of AKR.H-2b SL1 insusceptible to anti-AKR/Gross virus CTL. Like AKR.H-2b thymocytes, neither AKR spleen cells or thymocytes nor B6.GIX + thymocytes were able to stimulate the generation of anti-AKR/Gross virus CTL from primed B6 responder cell populations. In contrast, both T cell-enriched and B cell-enriched preparations derived from AKR.H-2b spleen cells were able to stimulate at the in vitro phase of induction, although B cell-enriched preparations were considerably more efficient. The discordant results obtained with AKR.H-2b spleen cells vs thymocytes were confirmed and extended in experiments in which these cells were employed as target cells to directly assess the cell surface expression of virus-associated, CTL-defined antigens. Thus, AKR.H-2b spleen cells, but not thymocytes, were recognized by anti-AKR/Gross virus CTL when fresh normal cells were tested as unlabeled competitive inhibitors, or when mitogen blasts were tested as labeled targets. Fresh or lipopolysaccharide-stimulated B cell-enriched spleen cells were as efficiently recognized as unseparated spleen cell preparations. Unexpectedly, fresh or Lens culinaris hemagglutinin-stimulated T cell-enriched spleen cell preparations, although susceptible to anti-minor H CTL, were almost as poor as targets for anti-viral CTL as were thymocytes. Together, these results demonstrate the H-2-restricted expression of CTL-defined, endogenous, AKR/Gross virus-associated target antigens by normal AKR.H-2b splenic B cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We previously described the generation and specificity of H-2-restricted cytolytic lymphocytes (CTL) directed against tumors induced by AKR/Gross murine leukemia viruses (MuLV). Such anti-AKR/Gross virus CTL demonstrated type specificity; only tumors induced by endogenous MuLV that expressed the Gross cell-surface antigen were lysed. These CTL and their precursor also recognized normal spleen cells from AKR-H-2 b , but not AKR-H-2 b , Fv-1 b mice, however, suggesting that N-ecotropic, retrovirus-associated antigens were primarily involved. Here, expression of these CTL-defined retroviral antigens by H-2b-positive AKR × C57L recombinant inbred strains was examined by using normal spleen cells as stimulators in the generation of specific anti-AKR/Gross virus CTL. Analysis of the strain distribution pattern of stimulation indicated that a single proviral locus, Akv-1, was primarily, if not entirely, responsible for CTL-defined retroviral antigen expression. The lack of correlation with two other well-defined proviral loci was interesting. Whereas Akv-3 is known to encode a defective virus, Akv-4 has been shown to code for an infectious virus thought to be very similar or identical to that of Akv-1. Although quantitative differences cannot be formally excluded, dose response experiments argued against this possibility and suggested that Akv-1 and Akv-4 may exhibit qualitative differences germane to antiviral CTL recognition.  相似文献   

8.
The role of H-2- and T-region products in determining allogeneic cell rejection was evaluated inH-2 congenic and recombinant mice by transplanting A1ATH and A6ATL leukemia cell lines induced in A.TH and A.TL strains, respectively, by Moloney murine leukemia virus. — InK- orD-region incompatible hosts transplant failure was observed, while inI +T-region incompatible hosts either rejection or prolonged survival was seen. In mice preimmunized with spleen cells fromI- and/orT-region incompatible donors, leukemia cells were rejected by mice immune only to T-region products, and accepted by mice immune only to I-region products. — Cell-mediated cytotoxicity studies confirmed in vivo results. Secondary CTLs specifically directed against I-region products did not lyse the A1ATH and A6ATL cells, and secondary CTLs from A.TH and A.TL mice sensitized against A6ATL and A1ATH cells respectively exerted a lytic action specific for T-region products, while no activity was observed against I determinants. — The data suggest that tumor-transplant rejection may also be governed by histocompatibility antigens encoded in theT region.  相似文献   

9.
The D region of the H-2 d haplotype contains five class I genes: H-2D d , D2 d , D3 d , D4 d and H-2L d . Although previous studies have suggested the presence of D-end encoded class I molecules in addition to H-2Dd and H-2Ld, segregation of genes encoding such molecules has not been demonstrated. In this report we have used cãtotoxic T lymphocytes (CTL) to examine the D region of the H-2 d haplotype for the presence of additional class I molecules. CTL generated in (C3H × B6.K1)F1 (K k D k , K b D b ) mice against the hybrid class I gene product Q10d/Ld expressed on L cells cross-react with H-2Ld but not H-2Dd molecules, as determined by lysis of transfected cells expressing H-2Ld but not H-2Dd. Although H-2Ld-specific monoclonal antibodies (mAb) completely inhibit H-2Ld-specific CTL from killing B10.A(3R) (K b D d L d ) target cells, only partial inhibition of anti-Q10 CTL-mediated lysis was observed, suggesting the presence of an additional D-end molecule as a target for these latter CTL. To identify the region containing the gene encoding the Q10 cross-reactive molecule, we show that anti-Q10 CTL lyse target cells from a D-region recombinant strain B10.RQDB, which has H-2D d , D2 d , D3 d , D4 d , and H-2D b but not the H-2L d H-2 d , and H-2L d (including D2 d , D3 d , and D4 d , lacks this anti-Q10 CTL target molecule. Together, these data demonstrate that a class I gene mapping between H-2D d and H-2L d encodes an antigen recognozed by anti-Q10 CTL. A likely candidate for this gene is D2 d , D3 d or D4 d .  相似文献   

10.
11.
Cytotoxic T lymphocyte (CTL) recognition sites on class I major histocompatibility complex molecules have been investigated by several laboratories by using cloned genes expressed on mouse L cells by DNA-mediated gene transfer. Recombinant genes, constructed by restriction endonuclease treatment of cloned H-2Dd and Ld genes and exchange of the N and C1 exons (exon shuffling) have provided an additional tool. These hybrid H-2 molecules expressed on L cells have been used as targets to achieve more precise localization of site(s) recognized by allospecific and virus-specific CTLs. CTL systems were chosen that limit recognition to either the Dd or Ld alloantigen or to virus and Dd or Ld complexes. Using this approach, we were able to map essential restricting site(s) to the N and/or C1 domains. Additional evidence is presented that the cytoplasmic tail of H-2 may be involved in interactions with some viral antigens and effect the formation of an immunogenic complex.  相似文献   

12.
The humanMAGE3 gene is expressed in a significant proportion of tumors of various histological types, but is silent in normal adult tissues other than testis and placenta. Antigens encoded byMAGE3 may therefore be useful targets for specific antitumor immunization. Two antigenic peptides encoded by theMAGE3 gene have been reported previously. One is presented to cytolytic T lymphocytes (CTL) by HLA-A1, the other by HLA-A2 molecules. Here we show that MAGE3 also codes for a peptide that is presented to CTL by HLA-1344.MAGE3 peptides containing the HLA-1344 peptide binding motif were synthesized. Peptide MEVDPIGHLY, which showed the strongest binding to HLA-1344, was used to stimulate blood T lymphocytes from normal HLA-1344 donors. CTL clones were obtained that recognized not only HLA-B44 cells sensitized with the peptide, but also HLA-B44 tumor cell lines expressingMAGE3. The proportion of metastatic melanomas expressing theMAGE3/HLA-1344 antigen should amount to approximately 17% in the Caucasian population, since 24% of individuals carry theHLA-B44 allele and 76% of these tumors express MAGE3.  相似文献   

13.
Observations have frequently been interpreted as showing that the helper T cells which collaborate with alloantigen-specific cytotoxic T-cell precursors can only recognize antigens encoded in the I region of the H-2 gene complex. An experimental system is described here that allows analysis of the recognition repertoire of these helper cells. CBA helper T-cell precursors can be primed in vitro to antigens encoded in the H-2 b gene complex. These helpers can then be tested for the existence of a subset of helper cells which recognize antigens encoded in the D region of H-2 b haplotype. CBA thymocytes were used as a source of cytotoxic T-cell precursors that respond poorly in the absence of exogeneous helper activity. The source of alloantigen was varied by using irradiated spleen cells from various (BALB/c × recombinant)F1 hybrid mice as stimulator cells. When the stimulator cell bears BALB/c determinants recognized by the cytotoxic T-cell precursor and also bears only the D region antigens of the H-2 b haplotype, an anti-BALB/c cytotoxic response is generated only if the anti-H-2b helper population contains cells able to recognize H-2Db. A positive cytotoxic response was obtained, indicating that helper cells are not limited to recognition of I region antigens and can efficiently recognize antigens encoded in the D region of the H-2 gene complex. This was confirmed by the demonstration of helpers specific for H-2Dd. We were unable to detect any evidence for Ia-restricted recognition of the H-2D alloantigens, suggesting that, as for cytotoxic T lymphocytes (CTL), helper cell recognition of class I alloantigens is an unrestricted event.  相似文献   

14.
H-2b-restricted cytolytic T lymphocytes (CTL) were generated against H-1, H-3, and H-4 antigens and tested against target cells of F1 hybrids between wild mice and inbred H-2 b mice. The congenic strain combinations for the CTL production were such that they tested one allele each at the H-1 and H-4 loci and four alleles at the H-3 locus. Most of the wild mice tested came from Southern Germany, but a few mice came from other European countries and Egypt and Israel. Virtually all wild mice typed as positive with CTL directed against H-3b and H-4b antigens; 32% of the F1 hybrids tested reacted with anti-H-1cCTL and 9% reacted with anti-H-3d CTL. The positive results were not caused by cross-reaction with allogeneic H-2 antigens controlled by the major histocompatibility complex (Mhc) genes of the wild mice. At least some of the H-3 and H-4 antigens detected by the CTL in the F1 hybrid were not identical with antigens of the immunizing strains. These results suggest a relatively low degree of polymorphism of the tested minor H loci in wild mice and further support the notion that minor H loci are unrelated to the Mhc.  相似文献   

15.
This report describes our continued efforts to elucidate the genetic fine structure of the central portion of the mouse chromosome (Chr) 2. Mice from our panel of 28 Chr 2 congenic strains were tested: (1) for the presence of the antigens which stimulate Chr 2-reactive lymphocyte clones in mixed lymphocyte reactive lymphocyte clones in mixed lymphocyte reaction (MLR); (2) for the antigens of histocompatibility (H) genes H-42 a and H-45 a as determined by allograft rejection; and (3) for their ability to respond to the H-Y antigen in a cell-mediated lysis assay. The results obtained in this study have allowed additional mapping of immunoogically involved Chr 2 genes. The gene encoding the antigen which stimulates lymphocyte clone 1C11 can be considered wholly different from other Chr 2 H genes on the basis of chromosomal recombination. We have assigned the symbol H-48 to this gene. The following gene order has been established: [H-3, B2m, pa], we, [H-42, H-48], H-45, IR-H-Y, Hd-1, un, H-13, A w. The order of the bracketed genes is not known. H-44 maps centromeric to IR-H-Y. The genes encoding the antigens that stimulate lymphocyte clones 2G7, 2C10, 1F6, 1B10, and 1H10 map centromeric to H-45.  相似文献   

16.
A cell-surface-associated variant H-2K product was expressed by an Abelson virus-induced pre-B-cell line after chemical mutagenesis with ethyl methane sulfonate. The variant cell line (R8.313) was previously demonstrated to have altered allodeterminants in Kb as demonstrated by both Kb-specific monoclonal antibody binding and alloreactive cytotoxic T lymphocyte (CTL) cytolysis. The mutant H-2K b gene from R8.313 was cloned and characterized in detail. DNA sequence analysis of the region of the gene corresponding to the three extracellular domains identified a single point mutation resulting in a leucine-to-phenylalanine substitution at amino acid residue 82. The site of mutation within the 1 domain was confirmed by oligonucleotide hybridization analysis. Mouse L-cell fibroblasts transfected with the mutant gene were recognized with the same monoclonal antibody binding and CTL lytic pattern as the R8.313 cell line, confirming that the altered phenotype of the mutant cell line was due to a point mutation in the H-2K b gene. These data further extend the hypothesis that the region of amino acid residues 70–90 in the 1 domain is important in the formation of both antibody and CTL-defined recognition structures on major histocompatibility complex class I molecules.  相似文献   

17.
(AQR×B10)F1 mice were grafted with skin from donors differing in theK, I, KI, andISD regions of theH-2 complex. A dichotomy was observed in the fate of theH-2I-disparate grafts: either they were rejected acutely within the second week or were accepted indefinitely. Acceptances were much more common among male than female hosts. Acceptor status was limited to the I group, was unpredictable in occurrence, was not well-correlated with positive serum anti-Ia titers, and did not confer protection of grafts that were alike atH-2I but different atH-2K orH-2D. Since theH-2I barrier studied here elicited such divergent responses in genetically identical hosts, it is unlikely that any histocompatibility typing test could predict graft fate.Abbreviations used in this paper are MST median survival time - MHC major histocompatibility complex - CTL cytotoxic T lymphocyte - B10 C57 BL/10 - 6R BIO.T(6R) - B10.A BIO. ASn - H-2-Ia serologically detected antigens coded in theI region ofH-2 This term is used in preference toIa, since it has recently been shown that Ia-like alloantigens may be coded outside the MHC (Dickleret al. 1975).  相似文献   

18.
Cytotoxic lymphocytes (CTL) were generated betweenIg-1-congenic strains BALB/c(H-2d,Ig-1a) andC.B-17(H-2d,Ig-1b) by cross-immunization in both directions and rechallenge in vitro. The effector cell populations specifically lysed target cells sharing both theH-2 haplotype and theIg-1 allele of the sensitizing strain. B- and T-cell blasts were equally good targets, suggesting thatH-2-restricted cytotoxic lymphocytes are not directed against serologically defined conventional allotypic determinants, but probably against minor histocompatibility antigens controlled by genes linked to theIg-1 complex. Competition experiments using cold target cells from a series ofIg-1b-congenic strains of the BALB/c background (BAB-14, C.B-17, C.B-26) revealed two not yet described minor histocompatibility loci linked to theIg-1 complex: We could demonstrate that BALB/c anti-C.B-17 effector cells recognize at least two distinct antigenic determinants on C.B-17 target cells, but only one on target cells from BAB-14, which carries a recombinantIg-1 complex. From these results we conclude that one of the minor histocompatibility antigens, designated as H(CH), is encoded by a gene linked to the heavy-chain constant-region (CH) genes, whereas the second minor histocompatibility antigen, designated as H(VH), is coded for by a gene linked to the heavy-chain variable-region (VH) genes. These two new genetic markers may be useful for further analysis of the mouseIg-1 complex because the analysis of the H(CH) and H(VH) genes may facilitate the search for recombinants in that chromosomal region.  相似文献   

19.
Functional studies concerning the unique interaction between class I H-2 allodeterminants and cytolytic T lymphocyte (CTL) antigen receptors have benefitted from the development of H-2Kb mutant mouse strains and somatic H-2 variants selected with monoclonal antibody. Here, we describe the development of a novel approach to immunoselection of somatic H-2Kb variants employing a Kb-specific CTL clone as the negative selective agent. The rationale for this method is that the use of an alloreactive CTL clone as the selective agent should enable us to detect the emergence of structural Kb variants based on their loss of the relevant CTL-defined allodeterminant. Thus, these structural variants are well suited to an in-depth analysis of the functional relationship between H-2 antigens and receptor recognition by CTL. Using this approach, we successfully isolated two types of structural Kb variants, as well as numerous Kb-loss variants. The functional studies described in this paper indicate that these structural variants exhibit alterations in expression of both CTL-defined and serologically defined H-2Kb allodeterminants. The structural characterization of such variants should enable us to identify the precise amino acid residues responsible for the creation of the relevant CTL-defined Kb allodeterminants.  相似文献   

20.
The I-region gene products of 29 wild-derivedH-2 haplotypes on a B10 background (B10.W congenic lines) were typed with alloantisera which detect 17 inbred I-region antigens. Five new I-region antigens were defined by expanding the inbred line panel ofH-2 haplotypes to includeH-2 u , H-2v, andH-2 j . Based on serological analyses of the inbred and B10.W lines, the polymorphism of theIA gene (or genes) is estimated to be at a minimum of 15 alleles and theIE gene (or genes) at a minimum of 4 alleles. These results indicate that theIA subregion is more polymorphic than theIE subregion. By combining the I-region typing data with theH-2K andH-2D region typing data reported previously, a total of 11 new natural recombinants of inbredH-2 alleles were detected among the B10.W lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号