首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
2.
An aminopeptidase has been purified to homogeneity from bovine lens tissue by gel filtration and DEAE-cellulose chromatography. This enzyme has a molecular weight of 96,000 under both native and denaturing conditions. The purified enzyme hydrolyzed a variety of synthetic substrates as well as di-, tri-, and higher molecular weight peptides. Significantly this enzyme is capable of hydrolyzing arginine, lysine, and proline aminoacyl bonds. The pH optimum for activity and stability was 6.0. Both a reduced sulfhydryl group and a divalent metal ion are essential for activity. The native enzyme contains 1.6 mol of zinc and 1.0 mol of copper/mol of enzyme. No activation was seen upon incubation with either magnesium or manganese; however, heavy metal ions were inhibitory. Bestatin and puromycin were effective inhibitors and no endopeptidase activity could be detected in the purified preparation. This enzyme is clearly distinct from the lens leucine aminopeptidase, but rather, is identical to a cytosolic aminopeptidase III isolated from other tissues. Evidence is presented which argues that this enzyme may be the major lens aminopeptidase under in vivo conditions.  相似文献   

3.
The coenzyme A (CoA)-linked butyraldehyde dehydrogenase (BAD) from Clostridium acetobutylicum was characterized and purified to homogeneity. The enzyme was induced over 200-fold, coincident with a shift from an acidogenic to a solventogenic fermentation, during batch culture growth. The increase in enzyme activity was found to require new protein synthesis since induction was blocked by the addition of rifampin and antibody against the purified enzyme showed the appearance of enzyme antigen beginning at the shift of the fermentation and increasing coordinately with the increase in enzyme specific activity. The CoA-linked acetaldehyde dehydrogenase was copurified with BAD during an 89-fold purification, indicating that one enzyme accounts for the synthesis of the two aldehyde intermediates for both butanol and ethanol production. Butanol dehydrogenase activity was clearly separate from the BAD enzyme activity on TEAE cellulose. A molecular weight of 115,000 was determined for the native enzyme, and the enzyme subunit had a molecular weight of 56,000 indicating that the active form is a homodimer. Kinetic constants were determined in both the forward and reverse directions. In the reverse direction both the Vmax and the apparent affinity for butyraldehyde and caproaldehyde were significantly greater than they were for acetaldehyde, while in the forward direction, the Vmax for butyryl-CoA was fivefold that for acetyl-CoA. These and other properties of BAD indicate that this enzyme is distinctly different from other reported CoA-dependent aldehyde dehydrogenases.  相似文献   

4.
Protein l-isoaspartate (d-aspartate) O-methyltransferase (EC 2.1.1. 77) is a repair enzyme that methylates abnormal l-isoaspartate residues in proteins which arise spontaneously as a result of aging. This enzyme initiates their conversion back into the normal l-aspartate form by a methyl esterification reaction. Previously, partial cDNAs of this enzyme were isolated from the higher plant Arabidopsis thaliana. In this study, we report the cloning and expression of a full-length cDNA of l-isoaspartyl methyltransferase from A. thaliana into Escherichia coli under the P(BAD) promoter, which offers a high level of expression under a tight regulatory control. The enzyme is found largely in the soluble fraction. We purified this recombinant enzyme to homogeneity using a series of steps involving DEAE-cellulose, gel filtration, and hydrophobic interaction chromatographies. The homogeneous enzyme was found to have maximum activity at 45 degrees C and a pH optimum from 7 to 8. The enzyme was found to have a wide range of affinities for l-isoaspartate-containing peptides and displayed relatively poor reactivity toward protein substrates. The best methyl-accepting substrates were KASA-l-isoAsp-LAKY (K(m) = 80 microM) and VYP-l-isoAsp-HA (K(m) = 310 microM). We also expressed the full-length form and a truncated version of this enzyme (lacking the N-terminal 26 amino acid residues) in E. coli under the T7 promoter. Both the full-length and the truncated forms were active, though overexpression of the truncated enzyme led to a complete loss of activity.  相似文献   

5.
K B Hadley  P H Sato 《Enzyme》1989,42(4):225-234
Scurvy in guinea pigs provides a convenient model of inborn metabolic disease for the investigation of enzyme therapy protocols. Gulonolactone oxidase, the enzyme in ascorbic acid biosynthesis that is missing from the scurvy-prone species, was modified by attachment of polyethylene glycol. The catalytic properties of this enzyme were affected little by the modification. Intravenous injection of this modified form of the enzyme elicited ascorbic acid synthesis in a dose-dependent manner. The modified enzyme was stabilized to incubation at 37 degrees C but was not protected from inactivation by trypsin. The circulating half-life of enzyme activity was not prolonged by this modification. Further, attachment of polyethylene glycol did neither abolish the enzyme's ability to react with preformed antibodies nor eliminate its immunogenicity.  相似文献   

6.
Human pyrimidine nucleoside monophosphate kinase is a polymorphic enzyme having two allelic gene products, UMPK 1 and UMPK 2, in several populations. A procedure is described for the partial purification of this enzyme from human red blood cells resulting in a 1500-fold purification of the enzyme for UMPK 1 and 583-fold for UMPK 2. The purified enzyme preparation catalyzed the phosphorylation of UMP, CMP, and dCMP, and used ATP as the preferred phosphate donor. The heavy metals, mercury, and copper, were found to be strong inhibitors of pyrimidine nucleoside monophosphate kinase activity. EDTA was found to protect the enzyme from inactivation by the heavy metals, and 2-mercaptoethanol stabilized the enzyme during purification. UMPK 1 and UMPK 2 were found to have similar kinetic properties; however, UMPK 2 had a slower electrophoretic mobility and greater thermolability than UMPK 1.  相似文献   

7.
Changes in adipose-tissue lipoprotein lipase activity that are independent of protein synthesis were investigated in an incubation system in vitro. Under appropriate conditions at 25 degrees C a progressive increase in the enzyme activity occurs that is energy-dependent. Part of the enzyme is rapidly inactivated when the tissue is incubated with adrenaline or adrenaline plus theophylline. The mechanism of this inactivation appears to be distinct from, and to follow, the activation of the enzyme. A hypothesis is presented to account for the results in terms of an activation of the enzyme during obligatory post-translational processing and a catecholamine-regulated inactivation of the enzyme as an alternative to secretion from the adipocyte.  相似文献   

8.
Summary The enzyme acid phosphatase-1 was partially purified from 10 Drosophila species. Four antisera were produced and the ten enzymes were reacted against each serum. The method used to quantitate the reactions involved the electrophoretic separation of antigen-antibody complexes from uncomplexed enzyme, followed by densitometry of the free enzyme. Immunological distances were used to obtain correlation coefficients for all pairwise combinations of the 10 species. From these correlation coefficients, a dendrogram was constructed which is very similar to one diagramming the presumed phylogenetic relationships of the ten species. In addition, the data indicate acid phosphatase-1 has evolved at different rates in different lineages within the genus. A preliminary estimate of the unit evolutionary period for this enzyme is 3.25 million years. The method of determining immunological distances which was used in this study is compared to the method of microcomplement fixation in theDiscussion.  相似文献   

9.
delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.   总被引:1,自引:1,他引:0       下载免费PDF全文
Pseudomonas putida metabolizes D-lysine to delta 1-piperideine-2-carboxylate and L-pipecolate. The second step of this catabolic pathway is catalyzed by delta 1-piperideine-2-carboxylate reductase. This enzyme was isolated and purified from cells grown on DL-lysine as substrate. The enzyme was very unstable, resulting in low recovery of activity and low purity after a six-step purification procedure. The enzyme had a pH optimum of 8.0 to 8.3. The Km values for delta 1-piperideine-2-carboxylate and NADPH were 0.23 and 0.13 mM, respectively. NADPH at concentrations above 0.15 mM was inhibitory to the enzyme. Delta 1-pyrroline-5-carboxylate, pyroglutamate, and NADH were poor substrates or coenzyme for delta 1-piperideine-2-carboxylate reductase. The enzyme reaction from delta 1-piperideine-2-carboxylate to L-pipecolate was irreversible. EDTA, sodium pyrophosphate, and dithiothreitol at concentrations of 1 mM protected the enzyme during storage. The enzyme was inhibited almost totally by Zn2+, Mn2+, Hg2+ Co2+, and p-chloromercuribenzoate at concentrations of 0.1 mM. The enzyme had a molecular weight of about 200,000. Both D-lysine and L-lysine were good inducers for the enzyme. Neither delta1-piperideine-2-carboxylate nor L-pipecolate was an effective inducer for the enzyme. P. putida cells grew on D-lysine only after a 5- to 8-h lag, which could be abolished by adding a supplement of 0.01% alpha-ketoglutarate or other readily metabolizable compounds. Such a supplement also converted the noncoordinate induction of this enzyme and pipecolate oxidase, both of the D-lysine pathway, to coordinacy. However, this effect was not observed if the enzyme pair was from different pathways of lysine metabolism in this organism (i.e., the D- and L-lysine pathways).  相似文献   

10.
Induced alkaline phosphatase has been extracted from osteosarcoma cells grown in tissue culture medium. The extracted enzyme has been purified. Using electrophoresis, inhibition studies, and thermolability, the enzyme was categorized as alkaline phosphatase of osseous origin. Antibodies to this enzyme were reacted against alkaline phosphatase extracted from cadaveric bone, liver, intestine, kidney and fresh placenta. The antibodies were specific against alkaline phosphatase of osseous origin only. No cross-reaction occurred with the enzyme extracted from other sources. The data derived from these studies indicate that alkaline phosphatase of bone is a specific enzyme of osseous tissue. Furthermore, the enzyme has specific antigenic and other properties which distinguish it from alkaline phosphatases from other sources. A model for in vitro production of a specific alkaline phosphatase of bone is presented.  相似文献   

11.
Previous studies in this laboratory have identified two distinct nuclear poly(A) polymerases, a 48 kDA tumor type enzyme and a 36-38 kDA liver type enzyme. To investigate the tissue and species specificity of these enzymes, nuclear extracts were prepared from various rat tissues, pig brain and two human cell lines. These as well as whole cell extract from yeast were probed for the two enzymes by immunoblot analysis using polyclonal anti-tumor poly(A) polymerase antibodies or autoimmune sera which contain antibodies specific for the liver type enzyme. Results indicate that both tumor and liver type enzymes are conserved across species ranging from rat to human. The yeast enzyme does not appear to be immunologically related to the liver or the tumor type poly(A) polymerase. The liver type enzyme appears to be specific for normal tissues whereas the tumor type enzyme is detected only in tissues in a "tumorigenic" state or cell lines originating from tumor tissues.  相似文献   

12.
Previously we isolated and characterized a membrane-bound, arginine-specific serine protease from pig intestinal mucosa [J. Biol. Chem. 269, 32985-32991 (1994)]. For further characterization of this type of enzyme, we cloned a cDNA from rat intestinal mucosa encoding the precursor of a similar protease. The partial amino acid sequences determined for the pig enzyme were found to be shared almost completely by the rat enzyme. The serine protease domain of the rat enzyme, heterologously expressed in Escherichia coli, specifically cleaved Arg (or Lys)-X bonds with a marked preference for Arg-Arg or Arg-Lys, similar to the pig enzyme. The mRNA for the rat enzyme was shown to be distributed mainly in intestine, and the enzyme was detected in the duodenal mucosa as a 70 kDa protein. Immunohistochemical analysis of the small intestinal tissue showed that the enzyme is localized mainly on brushborder membranes.  相似文献   

13.
Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a beta-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60 degrees C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50 degrees C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only beta-2,6-linkage of levan, but also beta-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-beta-D-fructan 6-levanbiohydrolase (EC 3.2.1.64).  相似文献   

14.
Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme.  相似文献   

15.
The reactions of the EcoRI restriction endonuclease on the covalently closed DNA of plasmid pMB9 were studied in the presence of ethidium bromide. At the concentrations of ethidium bromide tested, which covered the range over which the DNA is changed from negatively to positively supercoiled, the dye caused no alteration to the rate at which this enzyme cleaved the covalently closed DNA to yield the open-circle form, but the rate at which these open circles were cleaved to the linear product could be inhibited. The fluorescence change, caused by ethidium bromide binding with different stoichiometries to covalently closed and open-circle DNA, provided a direct and sensitive signal for monitoring the cleavage of DNA by this enzyme. This method was used for a steady-state kinetic analysis of the reaction catalysed by the EcoRI restriction enzyme. Reaction mechanisms where a complex between DNA and Mg2+ is the substrate for this enzyme were eliminated, and instead DNA and Mg2+ must bind to the enzyme in separate stages. The requisite controls for this fluorimetric assay in both steady-state and transient kinetics studies, and its application to other enzymes that alter the structure of covalently closed DNA, are described.  相似文献   

16.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

17.
B H Kim  T L Rosenberry 《Biochemistry》1985,24(14):3586-3592
A small hydrophobic domain in isolated human erythrocyte acetylcholinesterase is responsible for the interaction of this enzyme with detergent micelles and the aggregation of the enzyme on removal of detergent. Papain has been shown to cleave this hydrophobic domain and to generate a fully active hydrophilic enzyme that shows no tendency to interact with detergents or to aggregate [Dutta-Choudhury, T.A., & Rosenberry, T.L. (1984) J. Biol. Chem. 259, 5653-5660]. We report here that the intact enzyme could be reconstituted into phospholipid liposomes while the papain-disaggregated enzyme showed no capacity for reconstitution. More than 80% of the enzyme reconstituted into small liposomes could be released by papain digestion as the hydrophilic form. Papain was less effective in releasing the enzyme from large liposomes that were probably multilamellar. In a novel application of affinity chromatography on acridinium resin, enzyme reconstituted into small liposomes in the presence of excess phospholipid was purified to a level of 1 enzyme molecule per 4000 phospholipid molecules, a ratio expected if each enzyme molecule was associated with a small, unilamellar liposome. Subunits in the hydrophilic enzyme form released from reconstituted liposomes by papain digestion showed a mass decrease of about 2 kilodaltons relative to the intact subunits according to acrylamide gel electrophoresis in sodium dodecyl sulfate, a difference similar to that observed previously following papain digestion of the soluble enzyme aggregates. The data were consistent with the hypothesis that the same hydrophobic domain in the enzyme is responsible for the interaction of the enzyme with detergent micelles, the aggregation of the enzyme in the absence of detergent, and the incorporation of the enzyme into reconstituted phospholipid membranes.  相似文献   

18.
The tryptophan residue at position 16 of coffee bean alpha-galactosidase has previously been shown to be essential for enzyme activity. The potential role of this residue in the catalytic mechanism has been further studied by using site-directed mutagenesis to substitute every other amino acid for tryptophan at that site. Mutant enzymes were expressed in Pichia pastoris, a methylotrophic yeast strain, and their kinetic parameters were calculated. Only amino acids containing aromatic rings (phenylalanine and tyrosine) were able to support a significant amount of enzyme activity, but the kinetics and pH profiles of these mutants differed from wild-type. Substitution of arginine, lysine, methionine, or cysteine at position 16 allowed a small amount of enzyme activity with the optimal pH shifted towards more acidic. All other residues abolished enzyme activity. Our data support the hypothesis that tryptophan 16 is affecting the pKa of a carboxyl group at the active site that participates in catalysis. We also describe an assay for continuously measuring enzyme kinetics using fluorogenic 4-methylumbelliferyl substrates. This is useful in screening enzymes from colonies and determining the enzyme kinetics when the enzyme concentration is not known.  相似文献   

19.
We recently found and partially purified a new membrane-bound metallo dipeptidyl dipeptidase from bovine atrial tissue homogenates (Harris, R.B. & Wilson, I.B. (1984) Arch. Biochem. Biophys. 233, 667-675). We suggested that this enzyme was capable of cleaving the dipeptide, phenylalanyl-arginine from the C-terminus of atriopeptin II to give atriopeptin I. The atriopeptins are two atrial natriuretic peptides and the existence of the atrial peptide system has implicated the mammalian heart as an endocrine organ. The tetrapeptide benzoyl-glycyl-seryl-phenylalanyl-arginine was synthesized because it contains the C-terminal tripeptide sequence of atriopeptin II and should be useful to test the roles of the atrial enzyme and angiotensin I-converting enzyme in processing the atrial peptides. We found that for the atrial enzyme, Vmax was 13-fold higher and Km 7-fold-lower for this stand-in substrate than for benzoyl-glycyl-histidyl-leucine, a standard substrate used to measure converting enzyme activity. The ratio of Vmax/Km as a measure of substrate specificity indicates that the stand-in substrate is 86-fold better than benzoyl-glycyl-histidyl-leucine. In contrast, the stand-in substrate is a 20-fold poorer substrate for the converting enzyme than benzoyl-glycyl-histidyl-leucine. With the stand-in substrate, the converting enzyme showed pronounced substrate inhibition. An effective Vmax and Km were calculated using only concentrations of S below the optimum substrate concentration. These results confirm that the atrial enzyme is distinct from the converting enzyme. They also suggest that the conversion of atriopeptin II to atriopeptin I is a physiological process that is mediated by this enzyme.  相似文献   

20.
Various mammalian tissues contain a tissue-bound amine oxidizing enzyme distinct from mitochondrial outer membrane enzyme, monoamine oxidase (MAO, EC 1.4.3.4), termed semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6). An increase in SSAO activity was found in patients suffering from vascular disorders such as diabetes and diabetic complications. It has previously been shown that 2-bromoethylamine (2-BEA) is a potent, and selective suicidal inhibitor of tissue-bound SSAO. The aim of this study was to investigate the interaction of this suicidal SSAO inhibitor with the tissue-bound enzyme in guinea pig lung, kidney, stomach, and heart homogenates. The conditions necessary for this inhibitor to titrate the concentrations of this enzyme were also determined. 2-BEA appears to interact with SSAO, as reported previously for this enzyme from different sources, in a manner consistent with an irreversible, "suicide" reaction. Because of this property, 2-BEA could be used to titrate the concentrations of SSAO active centers in these tissues under the appropriate conditions employed. Although some possible non-specific binding of the inhibitor to sites other than the active center of the enzyme, metabolism of this inhibitor and/or presence of enzyme subtypes was hypothesized, the molecular characteristics of SSAO in these tissues (Km, Vmax values, enzyme efficiencies, approximate enzyme concentrations, and molecular turnover numbers) towards the substrate kynuramine (0.1 mM) at pH 7.4 and 37 degrees C have been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号