首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of three bis(thiosemicarbazone) compounds formed by the reaction of benzil with either thiosemicarbazide, 4-methyl-3-thiosemicarbazide or 4-phenyl-3-thiosemicarbazide are reported. The compounds were characterised by NMR spectroscopy, mass spectrometry and in the case of benzil bis(4-methyl-3-thiosemicarbazone) and benzil bis(4-phenyl-3-thiosemicarbazone) by X-ray crystallography. Attempts to purify benzil bis(thiosemicarbazone) and benzil bis (4-methyl-3-thiosemicarbazone) by recrystallisation resulted in the isolation of cyclised products that were characterised by X-ray crystallography. The 3 bis(thiosemicarbazone) compounds were used to synthesise both Cu(II) and Cu(I) complexes. The copper(II) complexes were formed by the reaction of the proligands with copper(II) acetate which gave neutral copper(II) complexes in which the thiosemicarbazone is doubly deprotonated, acting as a dianionic ligand. The copper(II)-benzil bis(4-phenyl-3-thiosemicarbazonato) complex was characterised by X-ray crystallography to show the copper in an essentially square planar N2S2 environment. The copper(I) complexes were synthesised by reacting the bis (thiosemicarbazone) ligands with [Cu(CH3CN)4]PF6 to give cationic complexes. The copper(I)-benzil-bis(thiosemicarbazone) complex was characterised by X-ray crystallography which revealed that the complex was a dimeric dication. Each of the benzil bis(thiosemicarbazone) ligands act as a bidentate N,S donor to each copper(I) atom, forming an overall helical structure in which each copper atom is in a strongly distorted tetrahedral N2S2 environment. Electrochemical measurements show that the copper(II)-benzil bis(thiosemicarbazonato) complex undergoes a reversible reduction at biologically accessible potentials.  相似文献   

2.
The synthesis, characterization and crystal structures of three new copper complexes derived from 1,3-bis(aryl)triazenido ligands bearing either a methoxycarbonyl, methylthio or a hydroxymethyl group in the ortho position of one of the aromatic rings are reported. In addition to the coordination of the triazenido fragment, the Lewis basic groups coordinate to the copper centers to form complexes with different nuclearity: {1-[2-(methoxycarbonyl)phenyl]-3-[4-methylphenyl]}triazene and {1-[2-(methylthio)phenyl]-3-[4-methylphenyl]}triazene form stable dinuclear and tetranuclear Cu(I) complexes, respectively. Reaction of {1-[2-(hydroxymethyl)phenyl]-3-[4-methylphenyl]}triazene with either Cu(I) or Cu(II) results in a novel Cu(II) hexanuclear macrocyclic complex.  相似文献   

3.
Saccharose, forming sufficiently stable complexes with copper(II) ions in alkaline solutions, was found to be a suitable ligand for copper(II) chelating in alkaline (pH>12) electroless copper deposition solutions. Reduction of copper(II)-saccharose complexes by hydrated formaldehyde was investigated and the copper deposits formed were characterized. The thickness of the compact copper coatings obtained under optimal operating conditions in 1h reaches ca. 2 microm at ambient temperature. The plating solutions were stable and no signs of Cu(II) reduction in the bulk solution were observed. Results were compared with those systems operating with other copper(II) ligands.  相似文献   

4.
A dimeric copper(II) complex bridged via a new tetra dentate bis benzimidazole diamide ligand [N,N′-bis(benzimidazolyl-2-yl)(methyl)pentane diamide](GBGA) with the composition [Cu2(GBGA)2(NO3)2](NO3)2 has been isolated and characterized. The X-ray structure of the above complex reveals that the unit cell consists of two centrosymmetric, crystallographically independent molecules, but differing in the coordination mode of ion. In one case ion is symmetric bidentate while in the other case it is monodentate. The coordination around Cu(II) is either a trigonally distorted octahedron (where the N2–O2 equatorial plane is formed by two benzimidazole N atoms and two carbonyl O atoms) or a distorted square pyramidal. The copper(II) complex carries out the selective oxidation of cinnamyl alcohol (allylic), geraniol (aliphatic-allylic) and 3-pyridyl carbinol (hetero aryl alcohol) to their respective aldehydes in the presence of tertiary butyl hydroperoxide as an alternative source of oxygen. The catalytic efficiency has been found to be much higher for the analogous copper(II) complex formed with the corresponding N-octylated ligand (O-GBGA). The percentage yield of the products viz geranial, cinnamyl aldehyde and 3-pyridyl carbinal varies between 34% and 57%. While the respective turnovers are 13-, 19- and 32-fold with respect to the copper(II) catalyst. A higher turnover in the case of 3-pyridyl carbinol is due to the transformation of the parent Cu(II) catalyst (having a N2–O2 type equatorial plane) to a more active Cu(II) species which have been shown to have a 4N donor equatorial plane as identified by low temperature EPR spectroscopy. Such a switch from a carbonyl O donor to an amine N donor of the peptidic link in the ligand may be important for the redox functioning of copper(II) bound to small peptides.  相似文献   

5.
A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.  相似文献   

6.
The reactivity of nitrite towards the copper(II) and copper(I) centers of a series of complexes with tridentate nitrogen donor ligands has been investigated. The ligands are bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-bb), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-bb), and bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (ddah) and carry two terminal benzimidazole (1-bb, 2-bb) or pyrazole (ddah) rings and a central amine donor residue. While 2-bb and ddah form two adjacent six-membered chelate rings on metal coordination, 1-bb forms two smaller rings of five members. The binding affinity of nitrite and azide to the Cu(II) complexes (ClO4 as counterion) has been determined in solution. The association constants for the two ligands are similar, but nitrite is a slightly stronger ligand than azide when it binds as a bidentate donor. The X-ray crystal structure of the nitrite complex [Cu(ddah)(NO2)]ClO4 (final R=0.056) has been determined: triclinic P1ˉspace group, a=8.200(2) ?, b=9.582(3) ?, c=15.541(4) ?. It may be described as a perchlorate salt of a “supramolecular” species resulting from the assembly of two complex cations and one sodium perchlorate unit. The copper stereochemistry in the complex is intermediate between SPY and TBP, and nitrite binds to Cu(II) asymmetrically, with Cu-O distances of 2.037(2) and 2.390(3) ? and a nearly planar CuO2N cycle. On standing, solutions of [Cu(ddah)(NO2)]ClO4 in methanol produce the dinuclear complex [Cu(ddah)(OMe)]2(ClO4)2, containing dibridging methoxy groups. In fact the crystal structure analysis (final R=0.083) showed that the crystals are built up by dinuclear cations, arranged on a crystallographic symmetry center, and perchlorate anions. Electrochemical analysis shows that binding of nitrite to the Cu(II) complexes of 2-bb and ddah shifts the reduction potential of the Cu(II)/Cu(I) couple towards negative values by about 0.3 V. The thermodynamic parameters of the Cu(II)/Cu(I) electron transfer have also been analyzed. The mechanism of reductive activation of nitrite to nitric oxide by the Cu(I) complexes of 1-bb, 2-bb, and ddah has been studied. The reaction requires two protons per molecule of nitrite and Cu(I). Kinetic experiments show that the reaction is first order in [Cu(I)] and [H+] and exhibits saturation behavior with respect to nitrite concentration. The kinetic data show that [Cu(2-bb)]+ is more efficient than [Cu(1-bb)]+ and [Cu(ddah)]+ in reducing nitrite. Received: 19 November 1999 / Accepted: 20 January 2000  相似文献   

7.
Chiral N,O pyridine alcohols HL1-HL6 were used to form complexes with copper(II) ions. Ligands HL1 and HL2 formed complexes with copper(II) ions when Cu(OAc)2 and HL were refluxed in methanol/ethanol mixture. Ligand HL3 formed a complex with copper(II) when deprotonated with NaH and stirred in a Cu(II) acetate THF solution. Ligands HL4-HL6 did not form complexes with copper(II) under similar conditions. Two complexes, [Cu(L1)2] and [Cu(L2)2], were isolated as single crystals and characterized by X-ray crystallography. These complexes showed low catalytic activities in asymmetric reactions. However, they became active when reacted with triflic acid. Copper complexes, [Cu(L)] or [Cu(L)]+, formed in situ by reacting ligands HL with copper(I) or (II) ions, respectively, were also found to be active copper catalysts for asymmetric cyclopropanation of styrene with ethyl diazoacetate and allylic oxidation of cyclohexene with t-butylperoxybenzoate. Enantioselectivities up to 56% and 38% were obtained in asymmetric cyclopropanation of styrene and asymmetric allylic oxidation of cyclohexene, respectively.  相似文献   

8.
A series of new coordination polymers of Cu(II) have been prepared in a reaction between copper(II) perchlorate or tetrafluoroborate salt and a novel ligand 1,4-di(1,2,3,4-tetrazol-2-yl)butane (bbtz). The compounds were characterised by an elemental analysis, TG measurements, IR, EPR and UV-Vis spectroscopy. Crystal structures of bbtz and five complexes of Cu(II) were determined by a single crystal X-ray diffraction measurement performed at 100 K. The composition and architecture of the obtained complexes strongly depend on the reaction conditions especially on the kind of solvent. Investigated complexes are composed of polymeric macrocations and non-coordinated anions. In all cases the bbtz molecules act as the bidentate ligand coordinated to metal(II) ions via N4, N4 nitrogen atoms from tetrazole rings. The complexes {[Cu(bbtz)2(MeOH)2]X2} (X=ClO4, BF4) crystallise from methanol as 2D coordination polymers. In these compounds central metal ions are coplanar linked by molecules of bbtz and a coordination sphere is completed by axially coordinated solvent molecules. The complexes {[Cu(bbtz)3]X2} (X=ClO4, BF4) were synthesised in EtOH/H2O solvent system and posses a common network topology. In this group of complexes each central atom is linked by ligand molecules to six other in plane arranged central atoms resulting in 2D networks. Reactions between Cu(II) salts and bbtz performed in absolute ethanol resulted in the formation of the next type of product. In {[Cu(bbtz)3](ClO4)2·2EtOH} neighboured copper(II) ions are linked by ligand molecules in the three directions what leads to the formation of 3D net. A crystal of this complex is composed of two mutually interpenetrated 3D networks.  相似文献   

9.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

10.
The 1:1 condensation of 1-benzoylacetone and 1,2-diaminopropane yields 6-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one (HL). When copper(II) perchlorate is added to the methanolic solution of HL, followed by triethylamine in 1:2:1 molar ratio, an unusual copper(II) complex, [Cu(L)(HL)]ClO4, is separated out where the deprotonated ligand, L, is coordinated in the usual chelating tridentate manner but HL is coordinated to Cu(II) only through the amine N, i.e. it acts as a pendant ligand. The complex is characterized by X-ray crystal structure analysis.  相似文献   

11.
Four new symmetric mixed-chelate dinuclear complexes type [Cu2(L)2(TAE)]X2, where TAE = tetraacetylethane; L = N,N-dimethyl-N′-benzylethylenediamine (L1) or N,N′-dibenylethylenediamine (L2); X = ClO4 or BPh4 have been synthesized and characterized on the bases of elemental analysis, spectroscopic and conductance measurements. The X-ray crystal analysis of [Cu2(L1)2(TAE)](ClO4)2 demonstrated that the two copper(II) ions are not equivalent. The axial position of the first copper is occupied by a ClO4 ion with a square pyramidal geometry whereas; the second copper ion resides in an octahedral environment determined by two perchlorate anions. However, in solution, the perchlorate ions are driven out by solvent molecules leading to their solvatochromism. The solvatochromism of the complexes were investigated in various organic solvents and also were compared with those of the corresponding mononuclear complexes [Cu(L)(acac)]ClO4. Their solvatochromism were also investigated with different solvent parameters models using stepwise multiple linear regression (SMLR) method. The results suggested that the DN parameter of the solvent has the dominate contribution to the shift of the d-d absorption band of the complexes. The results demonstrated that the complexes with counter ions of BPh4 are more solvatochromic in very weak donor solvents owing to their disinclination in ion-pair formation.  相似文献   

12.
With the aim of verifying different carbohydrate anomers coordinated to copper(II) ions, some copper(II) complexes with D-glucose (Glc), D-fructose (Fru), and D-galactose (Gal) were prepared and investigated by spectroscopic techniques. Their compositions were verified by elemental, ICP-AES and thermal analyses, in addition to conductivity measurements. The compounds isolated were consistent with the formula Na2[Cu2(carbohydrate)3].8H2O and Na[Cu2(carbohydrate)3].6H2O for the aldoses Glc and Gal, respectively, and Na2[Cu3(carbohydrate)4].8H2O in the case of the ketose, Fru. EPR spectra of these solids showed a rhombic environment around the metal center and suggested the presence of different anomers of the carbohydrates in each case. By Raman spectroscopy, it was possible to verify the predominance of the beta anomer of d-glucose in the corresponding copper complex, while in the free ligand the alpha anomer is predominant. In the case of the analogous complex with d-galactose, the spectrum of the complex shows bands of both anomers (alpha and beta) in approximately the same relative intensities as those observed in the isolated free ligand spectrum. On the other hand, for the complex with d-fructose a mixture of both furanose (five-membered ring) and pyranose (six-membered ring) structures was detected with prevalence of the furanose structure. Based on variations in the relative intensities of characteristic Raman bands, the binding site for copper in the fructose ligand was identified as most likely the 1-CH2OH and the anomeric 1-OH, while in beta-D-glucose it is presumably the anomeric 1-OH and the O-5 atom. These results indicated that EPR and Raman spectroscopy are suitable supporting techniques for the characterization of carbohydrate anomers coordinated to paramagnetic ions.  相似文献   

13.
Results are reported from potentiometric and spectroscopic (UV-Vis, CD, and ESR) studies of the protonation constants and Cu2+ complex stability constants of pituitary adenylate cyclase activating polypeptide fragments (HSDGI-NH2, TDSYS-NH2, RKQMAVKKYLAAVL-NH2). With HSDGI-NH2, the formation of a dimeric complex Cu2H-2L2 was found in the pH range 5-8, in which the coordination of copper(II) is glycylglycine-like, while the fourth coordination site is occupied by the imidazole N3 nitrogen atom, forming a bridge between two copper(II) ions. The formation of dimeric species does not prevent the deprotonation and coordination of the amide nitrogen, and in pH above 8 the CuH-2L complex is formed. Aspartic acid in the third position of peptide sequence stabilizes the CuH-2L species and prevents the coordination of a fourth nitrogen donor. Aspartic acid residue in the second position of TDSYS-NH2 stabilizes the CuL (2N) complex but does not prevent deprotonation and binding of the second and third peptide nitrogens to give 3N and 4N complexes at higher pH. The tetradecapeptide amide forms with copper(II) ions unusually stable 3N and 4N complexes compared to pentaalanine amide.  相似文献   

14.
The synthesis, crystal structures, magnetic and spectroscopic properties of zinc(II), nickel(II) and copper(II) dinuclear complexes 2-4 of a novel dinucleating polyoxazoline ligand 1 are reported. X-ray analysis revealed that the three complexes are centrosymmetric dinuclear species with an overall S shape, the bisoxazoline moieties pointing toward the aromatic core of the molecule. Magnetic susceptibility measurements suggest that there is a very weak exchange interaction between the copper or nickel ions in complexes 3 and 4.  相似文献   

15.
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Significantly reduced levels of these peptides were observed in neurodegenerative diseases and it may be suggested that this reduction may also result from the copper(II)-catalyzed oxidation. The studies of the interaction of copper(II) with neurokinin A and the copper(II)-catalyzed oxidation were performed. Copper(II) complexes of the neurokinin A (His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) and acetyl-neurokinin A (Ac-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) were studied by potentiometric, UV-Vis (UV-visible), CD (circular dichroism) and EPR spectroscopic methods to determine the stoichiometry, stability constants and coordination modes in the complexes formed. The histidine residue in first position of the peptide chain of neurokinin A coordinates strongly to Cu(II) ion with histamine-like {NH2, NIm} coordination mode. With increasing of pH, the formation of a dimeric complex Cu2H2L2 was found but this dimeric species does not prevent the deprotonation and coordination of the amide nitrogens. In the Ac-neurokinin A case copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination. To elucidate the products of the copper(II)-catalyzed oxidation of the neurokinin A and Ac-neurokinin A, liquid chromatography-mass spectrometry (LC-MS) method and Cu(II)/hydrogen peroxide as a model oxidizing system were employed.Oxidation target for both studied peptides is the histidine residue coordinated to the metal ions. Both peptides contain Met and His residues and are very susceptible on the copper(II)-catalyzed oxidation.  相似文献   

16.
Protonation equilibria of puromycin (PM) and puromycin aminonucleoside (PAN) and their coordination by copper(II) ion were studied in solution by potentiometry, electronic absorption spectroscopy (UV-Vis), circular dichroism (CD), electron paramagnetic resonance (EPR) and mass spectrometry. For puromycin four mononuclear complexes were found, with stoichiometries Cu(PM)2+, CuH(-1)(PM)+, CuH(-2)(PM) and CuH(-3)(PM)(-). In each of them the Cu(II) ion was bound in the peptidic-like manner, the differences of stoichiometries are a consequence of subsequent deprotonations of the sugar C2'-OH group and the coordinated water molecule. The coordination mode for puromycin aminonucleoside was aminosugar-like. Two dimeric complexes, Cu2H(-1)(PAN)2(2+) and Cu2H(-2)(PAN)2+, and one monomeric CuH(-2)(PAN)2 were found. The N6,N6-dimethyladenine moiety of PAN was not involved in the coordination process due to steric hindrance.  相似文献   

17.
The systematic investigation of the copper(II) complexes of tripeptides Xaa-Xaa-His, Xaa-His-Xaa and His-Xaa-Xaa, where Xaa=Gly or Ala was performed by combined pH-metry, spectrophotometry, CD and in part EPR spectroscopy. The matrix rank analysis of the spectral data revealed the number of the coloured and optically active species as a basis for the solution speciation. A critical evaluation on the speciation and solution structure of the complexes formed is presented on the basis of their d-d band optical activity. The replacement of a Gly residue with the chiral Ala amino acid allowed us to gain decisive information on the solution structure of the complexes by CD spectroscopy. It was shown that the tripeptides with histidine in the third position formed CuH(-2)L species with (NH(2), 2N(-), ImN - where Im stands for imidazole) coordination sphere as a major species, and only the macrochelated CuL complexes as minor species around pH 5.0. In copper(II)-Xaa-His-Xaa tripeptide systems the CuH(-1)L (NH(2), N(-), ImN) is the most stable species at physiological pH, but the vacant fourth site around copper(II)ions is offered for further deprotonation, most probably resulting in mixed hydroxo species at low (<5 x 10(-4)M) metal ion concentrations, while a tetrameric complex is dominant when the copper concentration exceeds 3 x 10(-3)M. The histamine type coordination mode in CuL and CuL(2) complexes of His-Xaa-Xaa ligands predominates at low pH. The structural consequences drawn from the CD spectra for the mono and bis parent complexes were supported by theoretical calculations. CD spectra strongly suggest the participation of the imidazole nitrogen both in the Cu(2)H(-2)L(2) and CuH(-2)L complexes.  相似文献   

18.
The neutral mononuclear copper(II) complexes with the quinolone antibacterial drugs, pipemidic acid and N-propyl-norfloxacin, in the presence or absence of nitrogen-donor heterocyclic ligands, 2,2′-bipyridine, 1,10-phenanthroline or 2,2′-dipyridylamine, have been prepared and characterized spectroscopically. The interaction of copper(II) with the deprotonated quinolone ligand leads to the formation of the neutral mononuclear complexes of the type [Cu(quinolone)2(H2O)] (1)–(2) while the presence of the N-donor ligand leads to the formation of the neutral mononuclear complexes of the type [Cu(quinolone)(N-donor)Cl] (3)–(8). In all the complexes, copper(II) is pentacoordinate having a distorted square pyramidal geometry. The electron paramagnetic resonance spectra of 1 and 2 are typical of mononuclear Cu(II) complexes, while for the mixed-ligands complexes 3–8 a mixture of dimeric and monomeric species is indicated. The interaction of the complexes with calf-thymus DNA has been investigated with diverse spectroscopic techniques and has shown that the complexes can be bound to calf-thymus DNA by the intercalative mode. The antimicrobial activity of the complexes has been tested on three different microorganisms. All the complexes show an increased biological activity in comparison to the corresponding free quinolone ligand.  相似文献   

19.
Complex formation between Cu(II) and three tetrazole analogues of opioid peptide-deltorphin I has been investigated. In potentiometric and spectroscopic (UV-Vis, CD and EPR) studies have been established the thermodynamic stability, speciation and structure of Cu(II) complexes with Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 (L1), Tyr-Psi(CN4)-Gly-Phe-Asp-Val-Val-Gly-NH2 (L2), Tyr-Gly-Psi(CN4)-Phe-Asp-Val-Val-Gly-NH2 (L3) and Tyr-D-Ala-Psi(CN4)-Phe-Asp-Val-Val-Gly-NH2 (L4). The site of the insertion of tetrazole moiety Psi(CN4) into the peptide sequences has critical impact on their co-ordination ability. Comparison of the binding ability of the tetrazole analogues reveals that around physiological pH region the L3 and L4 are more effective ligands for copper(II) than L(1) and L(2). The peptide conformation changes achieved by Cu(II) co-ordination may be essential for binding of the tetrazole deltorphins at the opiate receptors.  相似文献   

20.
A μ-alkoxo-μ-acetato trinuclear copper(II) complex, [Cu3(H2tea)(Htea)(CH3COO)2](ClO4) 1, has been synthesized by reacting copper(II) perchlorate, triethanolamine and sodium acetate. The unit cell contains two centrosymmetric, crystallographically independent trinuclear Cu(II) complexes and two ions. The crystallographically independent trinuclear Cu(II) complexes differ mainly in some of their geometry parameters. The coordination environment of the central copper atom is square-planar, in one trinuclear entity, and elongated octahedral in the other one (in this last case, the coordination number of the central copper atom increases through the semicoordination of an oxygen atom arising from the aminoalcohol). The acetato groups exhibit the classical syn-syn bridging mode. The distances between the copper(II) ions in the two entities are, respectively: 3.043(3) and 3.034(4) Å. The cryomagnetic investigation of 1 reveals a ferromagnetic interaction between the copper(II) ions (J = +84 cm−1), which is due to a countercomplementary effect of the acetato and alkoxo bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号