首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
E. coli tRNAMetf was hydrolyzed with RNase A using a limited amount of the enzyme to give two half molecules lacking the anticodon trimer and 3'-terminal dimer. Chemically synthesized trimers CUAp and UUAp were joined to the 5'-half molecules by phosphorylation with polynucleotide kinase plus ATP followed by treatment with RNA ligase. These modified tRNAMetf species had anticodons complementary to the termination codons UAG and UAA. Two half fragments were joined by a similar procedure to yield a molecule lacking the anticodon trimer and the 3'-dimer. Methionine acceptor activity of these tRNA was tested under conditions in which the CAU inserted control tRNAMetf accepted methionine. It was found that all three modified molecules were not recognized by the methionyl-tRNA synthetase from E.coli. The other sixteen amino acids were not incorporated with partially purified aminoacyl-tRNA synthetases.  相似文献   

2.
A tetradecanucleotide U-A-G-C(U-C-G)2G-G-C-Up corresponding to bases 21-34 of a nascent sequence of formylmethionyl tRNA of E. coli has been synthesized by the joining of two combinations of chemically synthesized oligonucleotides: 1) U-A-G-C + U-C-G-U-C-G + G-G-C-Up and 2) U-A-G-C + U-C-G-U + C-G-G-G-C-Up. In reaction 1) and the extent of joining *pG-G-C-Up to U-C-G-U-C-G was only 15.4% and the last ligation of the decamer to U-A-G-U proceeded to 27%. In reaction 2) joining between U-A-G-C and pU-C-G-Up gave a high yield (88%). The ligation of this octamer and *pC-G-G-G-C-Up also gave a satisfactory yield (52%). These reactions suggest that sequence preferences in RNA ligase reactions may arise from the structure of the 3'-end of acceptor molecules.  相似文献   

3.
Insertion of the four major nucleotides at the 5'-side of the anticodon triplet of E. coli tRNAMetf was performed by joining of the half molecules obtained by limited digestion with RNase A and the chemically synthesized tetranucleotide pN-C-A-U using RNA ligase. Insertion of U-U at the 5'-side or A and A-A at the 3'-side of the anticodon were also performed using U-U-C-A-U, C-A-U-A and C-A-U-A-A. The constant U next to the 5'-side of the anticodon was replaced with A and C by ligation of A-C-A-U and C-C-A-U to the 5'-half molecule which had been treated with periodate plus lysine, followed by joining to the 3'-half. These modified tRNAs were tested for their ability to accept methionine with the methionyl-tRNA synthetase of E. coli. The affinity of these analogs for the synthetase decreased more extensively when the insertion was at the 3'-side of the anticodon triplet. Insertion of mononucleotides at the 5'-side or replacement of the constant U next to the 5'-side of the anticodon did not affect aminoacylation drastically. This may mean that the 3'-side of the anticodon loop of tRNA is one of the major recognition sites for the methionyl-tRNA synthetase.  相似文献   

4.
An eicosanucleotide C--G--C--G--G--G--G--U--G--G--A--G--C--A--G--C--C--U--G--Gp corresponding to the bases 1--20 of the nascent sequence for the Escherichia coli tRNAfMet has been synthesized by the joining of the chemically synthesized oligonucleotides C--G--C--G, G--G--G--U--G--G and A--G--C--A--G--C--C--U--G--Gp using RNA ligase from T4-infected E. coli. The hexanucleotide and decanucleotide were phosphorylated with polynucleotide kinase and [gamma-32P]ATP prior to the joining reactions. The decanucleotide and eicosanucleotide were reconstituted respectively with the 3'-three-quarter molecule obtained by limited digestion with RNase T1 of the natural tRNAfMet from E. coli and the activity of the complex as a methionine acceptor was tested using purified methionyl-tRNA synthetase from E. coli. The amino acid acceptor activity of the reconstituted molecules was 11% and 84% with respect to that of the intact tRNAfMet.  相似文献   

5.
Recent evidence indicates that the anticodon may often play a crucial role in selection of tRNAs by aminoacyl-tRNA synthetases. In order to quantitate the contribution of the anticodon to discrimination between cognate and noncognate tRNAs by E. coli threonyl-tRNA synthetase, derivatives of the E. coli elongator methionine tRNA (tRNA(mMet)) containing wild type and threonine anticodons have been synthesized in vitro and assayed for threonine acceptor activity. Substitution of the threonine anticodon GGU for the methionine anticodon CAU increased the threonine acceptor activity of tRNA(mMet) by four orders of magnitude while reducing methionine acceptor activity by an even greater amount. These results indicate that the anticodon is the major element which determines the identity of both threonine and methionine tRNAs.  相似文献   

6.
We report the use of oligodeoxynucleotides to block the nucleolytic hydrolysis of single-stranded regions of RNA. Using complementary oligomers, the hydrolysis of the CCA terminus of methionine initiator tRNA could be prevented. This method can be useful in the production of specific single-stranded fragments of RNA, which are necessary in recombinant RNA technology.  相似文献   

7.
tRNA(guanine-1-)-methyltransferase (EC 2.1.1.31) and tRNA(N2-guanine)-methyltransferase I (EC 2.1.1.32) were isolated from rat liver. The (guanine-1-)-methyltransferase preparation is 6800-fold purified and is free from contaminating methyltransferases or ribonuclease. The molecular weight of (guanine-1-)-methyltransferase is 83 000. Of seven purified Escherichia coli tRNAs examined, only tRNAMetf was utilized as substrate by (guanine-1-)-methyltransferase. The methylation of tRNAMetf is maximally stimulated by 40 mM putrescine with a pH optimum of 8.0. Using E. coli K-12 tRNA, the Km for S-adenosylmethionine is 3 micrometer and Ki for S-adenosylhomocysteine is 0.11 micrometer for (guanine-1-)-methyltransferase. (N2-Guanine-)-methyltransferase is 6200-fold purified and is also free of interfering enzymes. It has a molecular weight of 69 000. E. coli tRNAPhe, tRNAVal and tRNAArg are substrates for this enzyme which introduces a methyl at the 2-amino group of the guanine at position 10 from the 5'-terminus of these tRNAs. The methylation of tRNAPhe is maximally stimulated by 100 micrometer spermidine with a pH optimum of 8.0. (N2-Guanine-)-methyltransferase has a Km for S-adenosylmethionine of 2 micrometer and a Ki for S-adenosylhomocysteine of 23 micrometer with E. coli K-12 tRNA as methyl acceptor.  相似文献   

8.
Madore E  Lipman RS  Hou YM  Lapointe J 《Biochemistry》2000,39(23):6791-6798
The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.  相似文献   

9.
The 3' ends of transfer ribonucleic acids were covalently labeled with a nitroxide spin label. The 3' end of initiator tRNA (tRNAMetf) from Escherichia coli shows different motional behavior than the 3' terminus of elongator tRNAs as monitored by EPR. The line shapes of the EPR spectra are quite sensitive to the buffer conditions, as shown by measurements in 4 different buffers. The data are consistent with a constrained or folded back 3' terminus in the initiator tRNA as opposed to the freely rotating elongator 3' terminus. The EPR spectra are also sensitive to aggregation of the tRNA.  相似文献   

10.
The coding region for the cytotoxin alpha-sarcin from Aspergillus giganteus has been chemically synthesized by the ligation of 19 overlapping oligodeoxyribonucleotides. An Escherichia coli clone producing the cytotoxin was constructed by inserting the synthesized gene directly downstream to the region coding for the signal peptide of the OmpA protein (a major outer membrane protein of E. coli), using the secretion cloning vector pIN-III-OmpA2. The enzyme encoded by the chemically synthesized gene expressed in E. coli displayed properties identical to those of native alpha-sarcin isolated from A. giganteus with respect to its chemistry, antigenicity and ribonucleolytic activity in qualitative assays.  相似文献   

11.
Petyuk VA  Zenkova MA  Giege R  Vlassov VV 《FEBS letters》1999,444(2-3):217-221
The interaction of antisense oligodeoxyribonucleotides with yeast tRNA(Phe) was investigated. 14-15-mers complementary to the 3'-terminal sequence including the ACCA end bind to the tRNA under physiological conditions. At low oligonucleotide concentrations the binding occurs at the unique complementary site. At higher oligonucleotide concentrations, the second oligonucleotide molecule binds to the complex due to non-perfect duplex formation in the T-loop stabilized by stacking between the two bound oligonucleotides. In these complexes the acceptor stem is open and the 5'-terminal sequence of the tRNA is accessible for binding of a complementary oligonucleotide. The results prove that the efficient binding of oligonucleotides to the 3'-terminal sequence of the tRNA occurs through initial binding to the single-stranded sequence ACCA followed by invasion in the acceptor stem and strand displacement.  相似文献   

12.
13.
Codon-anticodon interaction was investigated in fully active 5-fluorouracil-substituted E. coli tRNAVal1 (anticodon FAC) by 19F NMR spectroscopy. Binding of the codon GpUpA results in the upfield shift of a 19F resonance at 3.9 ppm in the central region of the 19F NMR spectrum, whereas trinucleotides not complementary to the anticodon have no effect. The same 19F resonance shifts upfield upon formation of an anticodon-anticodon dimer between the 19F-labeled tRNA and E. coli tRNATyr2 (anticodon QUA). These results permit assignment of the peak at 3.9 ppm to the 5-fluorouracil at position 34 in the anticodon of fluorouracil-substituted tRNAVal1. The methionine codon ApUpG also causes a sequence-specific upfield shift of a peak in the central part of the 19F NMR spectrum of fluorinated E. coli tRNAMetm. However, ApUpG has no effect on the 19F spectrum of 19F-labeled E. coli tRNAMetf, indicating possible conformational differences between the anticodon loop of initiator and chain-elongating methionine tRNAs. 19F NMR experiments detect no binding of CpGpApA to the complementary FpFpCpG (replaces Tp psi pCpG) in the T-loop of 5-fluorouracil-substituted tRNAVal1, in the presence or absence of codon, suggesting that the tertiary interactions between the T- and D-loops are not disrupted by codon-anticodon interactions.  相似文献   

14.
Proteins with N-terminal cysteine can undergo native chemical ligation and are useful for site-specific N-terminal labeling or protein semisynthesis. Recombinant production of these has usually been by site-specific cleavage of a precursor fusion protein at an internal cysteine residue. Here we describe a simpler route to producing these proteins. Overexpression in E. coli of several proteins containing cysteine as the second amino acid residue yielded products in which the initiating methionine residue had been completely cleaved by endogenous methionine aminopeptidase. While secondary modification of the terminal cysteine was a complicating factor, conditions were identified to eliminate or minimize this problem. Recombinant proteins produced in this way were suitable for site-specific modification of the amino terminus via native chemical ligation technology, as demonstrated by conjugation of a thioester-containing derivative of fluorescein to one such protein. The ability to directly produce proteins with N-terminal cysteine should simplify the application of native chemical ligation technology to recombinant proteins and make the technique more amenable to researchers with limited expertise in protein chemistry.  相似文献   

15.
16.
A fusion protein was genetically engineered that contains an antimicrobial peptide, designated P2, at its carboxy terminus and bovine prochymosin at its amino terminus. Bovine prochymosin was chosen as the fusion partner because of its complete insolubility in Escherichia coli, a property utilized to protect the cells from the toxic effects of the antimicrobial peptide. This fusion protein was purified by centrifugation as an insoluble inclusion body. A methionine linker between prochymosin and the P2 peptide enabled P2 to be released by digestion with cyanogen bromide. Cation exchange HPLC followed by reversed-phase HPLC were used to purify the P2 peptide. The recombinant P2 peptide's molecular mass was confirmed by mass spectrometry to within 0.1% of the theoretical value (2480.9 Da), and the antimicrobial activity of the purified recombinant P2 against E. coli D31 was determined to be identical to that of the chemically synthesized peptide (minimal inhibitory concentration of 5 mg/mL). Although the yield of the fusion protein after expression by the cells was high (16% of the total cell protein), the percentage recovery of the P2 peptide in the inclusion bodies was relatively low, which appears to be due to losses in the cyanogen bromide digestion step.  相似文献   

17.
A synthetic gene for a 88 amino acid long env protein fragment of the human T-cell leukemia virus type 1 (HTLV1) has been assembled by ligation of 35 oligodesoxyribonucleotides, which were chemically synthesized by the phosphotriester segmental support method. After cloning into the pEX vector this HTLV1 env-protein fragment was expressed in E. coli.  相似文献   

18.
19.
The first amino acid of "authentic" poliovirus RNA-dependent RNA polymerase, 3D(pol), is a glycine. As a result, production of 3D(pol) in Escherichia coli requires addition of an initiation codon; thus, a formylmethionine is added to the amino terminus. The formylmethionine should be removed by the combined action of a cellular deformylase and methionine aminopeptidase. However, high-level expression of 3D(pol) in E. coli yields enzyme with a heterogeneous amino terminus. To preclude this problem, we developed a new expression system for 3D(pol). This system exploits the observation that proteins fused to the carboxyl terminus of ubiquitin can be processed in E. coli to produce proteins with any amino acid as the first residue when expressed in the presence of a ubiquitin-specific, carboxy-terminal protease. By using this system, authentic 3D(pol) can be obtained in yields of 30-60 mg per liter of culture. While addition of a single glycine, alanine, serine, or valine to the amino terminus of 3D(pol) produced derivatives with a specific activity reduced by at least 25-fold relative to wild-type enzyme, addition of a methionine to the amino terminus resulted in some processing to yield enzyme with a glycine amino terminus. Addition of a hexahistidine tag to the carboxyl terminus of 3D(pol) had no deleterious effect on the activity of the enzyme. The utility of this expression system for production of other viral polymerases and accessory proteins is discussed.  相似文献   

20.
A DNA containing the coding sequence for the human cysteine proteinase inhibitor stefin A was obtained by enzymic ligation of chemically synthesized deoxyoligonucleotides, using the Khorana ligation method. The 306-bp synthetic gene carries signals for the initiation and termination of its translation. The gene was expressed in E. coli using a cytoplasmic expression vector and stefin A was secreted under the control of the E. coli alkaline phosphatase signal sequence, respectively. The secreted hybrid protein was shown to exhibit biological properties similar to the native protein isolated from human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号