首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In serum from five patients with severe burns, alpha 1-proteinase inhibitor (alpha 1-PI) was analyzed and then isolated by immunosorption chromatography. By Con A-Sepharose chromatography alpha 1-PI was separated into two types of fractions: the first containing the Con A-non-reactive isoforms and the second containing the Con A-reactive isoforms. The increase of alpha 1-PI serum level in burn patients is associated on the fifth day after the burn with a significant shift toward species enriched in bi-antennary oligosaccharides (Con A-reactive isoforms). This latter change passed very quickly and ten days after the burn, whereas the alpha 1-PI serum level was still high, the difference in proportions of Con A-reactive and non-reactive isoforms was not statistically significant. With respect to the difference in oligosaccharide structure, it appeared that the glycan moiety was involved in the inhibitory effect on natural killer cell activity. At the same concentration, purified alpha 1-PI and retained alpha 1-PI isoforms had an equal effect, whereas the non-retained alpha 1-PI isoforms were more efficient (P less than or equal to 0.01). Purified alpha 1-PI and its isoforms inhibited the natural killer cell activity in a dose-dependent manner.  相似文献   

2.
The regulation of tissue kallikrein activity by plasma serine proteinase inhibitors (serpins) was investigated by measuring the association rate constants of six tissue-kallikrein family members isolated from the rat submandibular gland, with rat kallikrein-binding protein (rKBP) and alpha 1-proteinase inhibitor (alpha 1-PI). Both these serpins inhibited kallikreins rK2, rK7, rK8, rK9 and rK10 with association rate constants in the 10(3)-10(4) M-1.s-1 range, whereas only 'true' tissue kallikrein rK1 was not susceptible to alpha 1-PI. This results in slow inhibition of rK1 by plasma serpins, which could explain why this kallikrein is the only member of the gene family identified so far that induces a transient decrease in blood pressure when injected in minute amounts into the circulation.  相似文献   

3.
Activated polymorphonuclear neutrophils (PMN) and macrophages generate oxidizing agents similar to or identical with N-chloroamines. Mimicking this oxidation in normal human plasma by usage of chloramine T (CT), we observed an oxidant concentration-dependent inactivating effect on plasma alpha 2-plasmin inhibitor (alpha 2-PI), antithrombin III (AT III), and alpha 1-proteinase inhibitor (alpha 1-PI). 20-50 mumol CT/ml plasma are necessary for almost complete inactivation of alpha 2-PI and AT III-activity, i.e. about 2-5 times the dose necessary for inactivation of alpha 1-PI which has already been classified as "oxidant sensitive". The inactivation of alpha 1-PI, alpha 2-PI and AT III in plasma by oxidants is the result of a specific oxidative damage since C1-inhibitor, serine proteinases and complexes of plasmin and alpha 2-PI were chloramine resistant under the conditions used. According to our results, the amount of chloramines released by 1 x 10(6) activated PMN, namely ca. 10 nmol (see Weiss et al. Science 222 625-628, 1983) would be sufficient to destroy alpha 1-PI and alpha 2-PI activity of 1.5 and 0.4 microliter of human plasma, respectively. Consequently, activated leukocytes may be able to create a microenvironment in which elastase as well as plasmin and thrombin can display their proteolytic activity unchecked by their regulator proteins. Oxidation may provide a general basis for altering enzyme/inhibitor balances.  相似文献   

4.
In severe inflammatory response, various blood and tissue cells, including polymorphonuclear granulocytes, release lysosomal proteinases, extracellularly and into the circulation. Such enzymes, as well as normally intracellular oxidizing agents produced during phagocytosis, enhance the inflammatory response by degrading connective tissue structures, membrane constituents and soluble proteins by proteolysis or oxidation. We first used polymorphonuclear elastase (E) as a marker of such release reactions. The liberated proteinase competes with susceptible substrates, including alpha 1-proteinase inhibitor (alpha 1PI) and alpha 2-macroglobulin, and is eliminated finally as inactive enzyme-inhibitor complexes by the reticulo-endothelial system. Using an enzyme-linked immunosorbent assay, we determined the plasma levels of E-alpha 1PI following major abdominal surgery, multiple trauma and pancreatogenic shock. Whereas the operative trauma was followed by up to 3-fold increase of the E-alpha 1-PI, postoperative septicemia was associated with a 10 to 20 fold increase. The increase of E-alpha 1-PI and a concomitant decrease of plasma factors, such as antithrombin III, clotting factor XIII and alpha 2-macroglobulin, were correlated. Multiple trauma causes a substantial increase of E-alpha 1-PI up to 14 hours after accident. The released elastase seems to correlate with severity of injury, but assessing the relationship to consumption of plasma factors is complicated by concomitant transfusions. In acute pancreatitis, peaks, of E-alpha 1-PI coincide with a massive consumption of antithrombin III and alpha 2-macroglobulin during shock.  相似文献   

5.
We previously described the isolation and purification of two similar alpha 1-protease inhibitors from mouse plasma termed alpha 1-PI(E) and alpha 1-PI(T) because of their respective affinities for elastase and trypsin. Some of the biochemical and immunological properties of these proteins are reported. Both are acidic glycoproteins with pI's of 4.1-4.2. The plasma half-life of each inhibitor, determined after administration of the 125I-protein, is approximately 4 h both in normal mice and in mice after induction of the acute phase reaction. The two proteins have almost identical amino acid compositions and similar CNBr peptide maps. Tryptic maps, however, are considerably different. Reverse-phase chromatography separated alpha 1-PI(E) into three distinct isoforms, each eluting with approximately 60% acetonitrile. Under these conditions alpha 1-PI(T) shows a single peak, clearly different from those of alpha 1-PI(E). The three alpha 1-PI(E) isoforms have the same molecular weights on sodium dodecyl sulfate-gel electrophoresis and the same tripeptide sequence at their N-terminus, and appear to be immunologically identical. Polyclonal, monospecific antibodies to each native inhibitor, prepared in rabbits, showed no cross-reactivity when tested by functional assay or crossed immunoelectrophoresis. Interestingly, each antibody recognized epitopes on the C-terminal portion of its respective antigen. These studies confirm that alpha 1-PI(E) and alpha 1-PI(T), although highly similar, are products of different genes. Like human alpha 1-PI, the two mouse inhibitors are partially inactivated by mild oxidation with chloramine-T, losing all elastase inhibitor and lesser amounts of antichymotryptic and antitryptic activity. However, unlike the human protein, neither alpha 1-PI(E) nor alpha 1-PI(T) was found to have a methionine residue at its P1 site.  相似文献   

6.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a member of the serpin superfamily of serine proteinase inhibitors that are involved in the regulation of a number of proteolytic processes. Alpha(1)-PI, like most serpins, functions by covalent binding to, and inhibition of, target proteinases. The interaction between alpha(1)-PI and its target is directed by the so-called reactive center loop (RCL), an approximately 20 residue domain that extends out from the body of the alpha(1)-PI polypeptide and determines the inhibitor's specificity. Mice express at least seven closely related alpha(1)-PI isoforms, encoded by a family of genes clustered at the Spi1 locus on chromosome 12. The amino acid sequence of the RCL region is hypervariable among alpha(1)-PIs, a phenomenon that has been attributed to high rates of evolution driven by positive Darwinian selection. This suggests that the various isoforms are functionally diverse. To test this notion, we have compared the proteinase specificities of individual alpha(1)-PIs from each of the two mouse species. As predicted from the positive Darwinian selection hypothesis, the various alpha(1)-PIs differ in their ability to form covalent complexes with serine proteinases, such as elastase, trypsin, chymotrypsin, and cathepsin G. In addition, they differ in their binding ability to proteinases in crude snake venoms. Importantly, the RCL region of the alpha(1)-PI polypeptide is the primary determinant of isoform-specific differences in proteinase recognition, indicating that hypervariability within this region drives the functional diversification of alpha(1)-PIs during evolution. The possible physiological benefits of alpha(1)-PI diversity are discussed.  相似文献   

7.
Human alpha1-proteinase inhibitor (alpha1-PI) is responsible for the tight control of neutrophil elastase activity which, if down regulated, may cause local excessive tissue degradation. Many bacterial proteinases can inactivate alpha1-PI by hydrolytic cleavage within its reactive site, resulting in the down regulation of elastase, and this mechanism is likely to contribute to the connective tissue damage often associated with bacterial infections. Another pathway of the inactivation of alpha1-PI is reversible and involves oxidation of a critical active-site methionine residue that may influence inhibitor susceptibility to proteolytic inactivation. Hence, the aim of this work was to determine whether this oxidation event might affectthe rate and pattern of the cleavage of the alpha1-PI reactive-site loop by selected bacterial proteinases, including thermolysin, aureolysin, serralysin, pseudolysin, Staphylococcus aureus serine proteinase, streptopain, and periodontain. A shift of cleavage specificity was observed after alpha1-PI oxidation, with a preference for the Glu354-Ala355 bond by most of the proteinases tested. Only aureolysin and serralysin cleave the oxidized form of alpha1-PI faster than the native inhibitor, suggesting that bacteria which secrete these metalloproteinases may specifically take advantage of the host defense oxidative mechanism to accelerate elimination of alpha1-PI and, consequently, tissue degradation by neutrophil elastase.  相似文献   

8.
9.
Leukolysin/MT6-MMP is a GPI-anchored matrix metalloproteinase (MMP) primarily expressed by neutrophils. It is stored in intracellular granules at resting state, but rapidly discharged upon stimulations into the extracellular milieu, presumably to promote tissue remodeling or destruction. The proteolytic targets for leukolysin at the inflammatory sites remain unknown. Here, we show that alpha-1-proteinase inhibitor, or alpha1-PI, a known protective shield against destructive serine proteinases, is a physiological target for leukolysin. We show that alpha1-PI failed to accumulate in media conditioned by cells co-expressing alpha1-PI and leukolysin. Purified leukolysin cleaves alpha1-PI efficiently at the Phe376Leu and Pro381Met bonds and the cleaved alpha1-PI lost its anti-proteolytic activity against human neutrophil elastase, cathepsin G (CatG) and proteinase 3 (PR3). In fact, leukolysin preferentially cleaves alpha1-PI when co-incubated with other extracellular molecules such as laminin and gelatin. Kinetically, leukolysin is more active than two known neutrophil MMPs, MMP8 and MMP9, in cleaving and inactivating alpha1-PI. Taken together, these results suggest that neutrophils may mediate tissue destruction by deploying leukolysin to weaken the alpha1-PI protective shield at inflammatory sites.  相似文献   

10.
Qualitative studies of lung lavage alpha 1-proteinase inhibitor   总被引:3,自引:0,他引:3  
A method is described which enables identification of the molecular size of alpha 1-proteinase inhibitor (alpha 1-PI) in biological fluids. This technique when applied to bronchoalveolar lavage fluids clearly demonstrates alpha 1-PI in three molecular forms; the native molecule (Mr approximately equal to ++54 000), a partially proteolysed form (Mr approximately equal to 49 000) and in a form suggestive of a complex with enzyme (Mr approximately equal to 82 000). Samples showing the presence of native alpha 1-PI inhibited more porcine pancreatic elastase than samples where no native alpha 1-PI was seen or where the predominant form was partially proteolysed alpha 1-PI (p less than 0.01). Although the predominant band of alpha 1-PI was more frequently the partially proteolysed form in current smokers (p less than 0.01), there was no clear difference in the inhibitory function of alpha 1-PI between current smokers and non-smokers and those with and without airflow obstruction.  相似文献   

11.
The inhibitor protein (PKI) of the cAMP-dependent protein kinase was first characterized from rabbit skeletal muscle. More recently a form of PKI was isolated and cloned from rat testis which shares relatively limited amino acid sequence with the rabbit skeletal muscle form. We have now isolated a cDNA from rat brain which encodes a protein corresponding to the rabbit skeletal muscle PKI. This establishes the presence of the "skeletal muscle" and "testis" proteins in the same species and therefore that they clearly represent distinct isoforms. We have also demonstrated that the isoform from testis, like the skeletal muscle isoform, is specific for the cAMP-dependent protein kinase and that it is able to inhibit this enzyme when expressed in cultured JEG-3 cells. Both forms contain the five specific amino acid recognition determinants which have been shown to be required for high affinity binding to the protein kinase catalytic site, although there is some noted lack of conservation of codons used for these residues. Overall, the two rat isoforms are only 41% identical at the amino acid level and 46% at the level of coding nucleotides. We propose that the rabbit skeletal muscle and rat testis forms be designated PKI alpha and PKI beta, respectively. Using Northern blot analysis, we have examined the tissue distribution of the two forms in the rat and their relative expression during development. In the adult rat, mRNA of the PKI alpha species is highest in muscle (both skeletal and cardiac) and brain (cortex and cerebellum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The consumption of kininogen (measured as kinin-releasable material) was studied in an experimental model in vitro. Analyses were made following the addition of increasing amounts of human cationic trypsin to human serum and plasma. The consumption of kininogen was correlated with the degree of saturation of the plasma proteinase inhibitors alpha 2-macroglobulin (alpha 2-M) and alpha 1-proteinase inhibitor (alpha 1-PI) with trypsin in the presence and absence of aprotinin (Trasylol). The level of kininogen fell dramatically when alpha 2-M was saturated to 70% in spite of 90% free alpha 1-PI. Trypsin-alpha 2-M complexes had no effect on kininogen levels. 60 mumol/l of aprotinin, i.e. approximately 3 X 10(6) KIU/l, blocked only 60% of the trypsin-induced kininogen consumption in serum, while 15 mumol/l of aprotinin blocked 100% of this consumption in plasma. With increasing concentration of aprotinin in serum, a decreasing consumption of alpha 2-M and especially of alpha 1-PI was observed on the addition of trypsin. The high aprotinin concentration needed to block trypsin-induced kininogen cleavage in human serum or plasma may explain the poor clinical effect of aprotinin to date in human acute pancreatitis.  相似文献   

13.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.  相似文献   

14.
The elastase inhibitory capacity of alpha 1-proteinase inhibitor (alpha 1-PI) was measured, using a direct and reproducible method, with phagocytic cells maintained in the tissue culture plate through the assay. The oxidative inactivation of alpha 1-PI is known to be mediated by the action of myeloperoxidase (MPO). The fact that hyposialylated IgG (hs IgG) induce the release of MPO prompted us to investigate the effects of such hs IgG on the inhibitory capacity of alpha 1-PI. The results show that 1-PI inactivation was observed only when phagocytic cells were activated by aggregated hs IgG, and not by unaggregated hs IgG. These observations indicate that hyposialylation should be completed by aggregation to perpetuate the oxidative reactions characteristic of inflammatory diseases.  相似文献   

15.
The ability of plasma proteinase inhibitors to inactivate human chymase, a chymotrypsin-like proteinase stored within mast cell secretory granules, was investigated. Incubation with plasma resulted in over 80% inhibition of chymase hydrolytic activity for small substrates, suggesting that inhibitors other than alpha 2-macroglobulin were primarily responsible for chymase inactivation. Depletion of specific inhibitors from plasma by immunoadsorption using antisera against individual inhibitors established that alpha 1-antichymotrypsin (alpha 1-AC) and alpha 1-proteinase inhibitor (alpha 1-PI) were responsible for the inactivation. Characterization of the reaction between chymase and each inhibitor demonstrated in both cases the presence of two concurrent reactions proceeding at fixed relative rates. One reaction, which led to inhibitor inactivation, was about 3.5 and 4.0-fold faster than the other, which led to chymase inactivation. This was demonstrated in linear titrations of proteinase activity which exhibited endpoint stoichiometries of 4.5 (alpha 1-AC) and 5.0 (alpha 1-PI) instead of unity, and SDS gels of reaction products which exhibited a banding pattern indicative of both an SDS-stable proteinase-inhibitor complex and two lower Mr inhibitor degradation products which appear to have formed by hydrolysis within the reactive loop of each inhibitor. At inhibitor concentrations approaching those in plasma where inhibitor to chymase concentration ratios were in far excess of 4.5 and 5.0, the rate of chymase inactivation by both serpin inhibitors appeared to follow pseudo-first order kinetics. The "apparent" second order rate constants of inactivation determined from these data were about 3000-fold lower than the rate constants reported for human neutrophil cathepsin G and elastase with alpha 1-AC and alpha 1-PI, respectively. This suggests that chymase would be inhibited about 650-fold more slowly than these proteinases when released into plasma. These studies demonstrate that although chymase is inactivated by serpin inhibitors of plasma, both inhibitors are better substrates for the proteinase than they are inhibitors. This finding along with the slow rates of inactivation indicates that regulation of human chymase activity may not be a primary function of plasma.  相似文献   

16.
Several variants of alpha 1-proteinase inhibitor (alpha 1-PI) were investigated by spectroscopic methods and characterized according to their inhibitory activity. Replacement of Thr345 (P14) with Arg in alpha 1-PI containing an Arg residue in position 358 (yielding [Thr345----Arg, Met358----Arg]alpha 1-PI) results in complete loss of its inhibitory activity against human alpha-thrombin; whereas an exchange of residue Met351 (P8) by Glu [( Met351----Glu, Met358----Arg]alpha 1-PI) does not alter activity. [Thr345----Arg, Met358----Arg]alpha 1-PI is rapidly cleaved by thrombin, while [Met358----Arg]alpha 1-PI and [Met351----Glu, Met358----Arg]alpha 1-PI form stable proteinase-inhibitor complexes. The stability of [Thr345----Arg, Met358----Arg]alpha 1-PI against guanidinium chloride denaturation is significantly enhanced compared to wild-type alpha 1-PI, and does not change after cleavage, resembling ovalbumin, a serpin with no inhibitory activity, from which the Thr345----Arg amino acid exchange had been derived. [Met351----Glu, Met358----Arg]alpha 1-PI and [Met358----Arg]alpha 1-PI resemble the wild-type protein in this respect. The CD spectra of intact and cleaved alpha 1-PI variants do not compare well with the wild-type protein, probably reflecting local structural differences. Insertion of a synthetic peptide, which corresponds to residues Thr345----Met358 of human alpha 1-PI, leads to the formation of binary complexes with all variants having the characteristic features of the binary complex between peptide and wild-type protein.  相似文献   

17.
Human alpha-1-proteinase inhibitor(1) (alpha(1)-PI) is the most abundant serine protease inhibitor in plasma. Its major function is inhibition of neutrophil elastase in lungs. alpha(1)-PI deficiency may result in severe, ultimately fatal emphysema. Three plasma-derived (pd-) alpha(1)-PI products are licensed in the US for replacement therapy of deficient patients. The recombinant versions (r-alpha(1)-PI), proposed as alternatives to pd-alpha(1)-PI products, have been under intensive investigation. For accurate determination of alpha(1)-PI from different sources and in various forms, there is an obvious need for reliable standardized assays for alpha(1)-PI quantification and potency measurements. As a part of our multi-step research focused on alpha(1)-PI structure-function investigation, we have established a simple and reproducible double-sandwich ELISA based on commercially available polyclonal antibodies. The developed ELISA allows the quantification of both pd-alpha(1)-PI and r-alpha(1)-PI in various complex matrices. A validation of the ELISA was performed with the working range of the assay (3.1-50 ng/ml) established on the bases of the following parameters: linearity (3-100 ng/ml, r(2)=0.995); accuracy (87.3-114.6% recovery); intra-assay precision (%CV, 2.8%); inter-assay plate-to-plate precision (3.9% per day and 4.1% day-to-day); detection limit (1.10 ng/ml); and quantification limit (3.34 ng/ml). The analytical performance of the alpha(1)-PI ELISA indicates that this assay can be used for monitoring concentration levels of alpha(1)-PI in multi-component biological matrices, based on the following: (a) quantification of r-alpha(1)-PI in various fermentation mixtures (E. coli and A. niger); (b) investigation of alpha(1)-PI enzymatically digested in the conditions of harsh fungal proteolysis; (c) evaluation of thermally polymerized alpha(1)-PI; (d) quantification of alpha(1)-PI in human serum; and (e) comparative quantification of alpha(1)-PI in commercially available products.  相似文献   

18.
Dog polymorphonuclear leukocyte cathepsin G was isolated from a granule extract using a two-step procedure including affinity chromatography on a Trasylol-Sepharose gel and ion-exchange chromatography on a CM 52 column. 22 of the first 24 N-terminal amino acids were determined and showed 83% and 71% identity to those of human and rat cathepsin G, respectively. Total amino-acid composition demonstrated the basic nature of the protein. In an SDS/polyacrylamide-gel electrophoresis the protein showed an Mr of 29,400 compared to the Mr of 26,800 calculated from the total amino-acid composition. The enzyme was shown to form complexes with alpha 1 alpha 2-macroglobulin and alpha 1-proteinase inhibitor. A specific enzyme-linked immunosorbent assay was developed for the determination of cathepsin G/alpha 1-proteinase inhibitor complex in dog plasma and tissue fluids. The mean concentration of cathepsin G in normal dog plasma was determined to be 38 micrograms/l, measured as cathepsin G/alpha 1-proteinase inhibitor complex. When active dog cathepsin G was added to normal dog plasma in vitro, approximately 56% could be measured by the assay. Slow intravenous infusion of a lethal dose of endotoxin in dogs was followed by a marked drop in white blood cell count and thrombocytes and a simultaneous rapid increase in plasma cathepsin G concentration, reaching a maximum level of 150 micrograms/l. Bile-induced experimental pancreatitis in dogs was accompanied by successive increase in cathepsin G levels in plasma as well as in peritoneal exudates, reaching a maximum level of about 300 micrograms/l in plasma and 18 mg/l in the exudates during the late stages of disease.  相似文献   

19.
The purpose of our investigation was to obtain monoclonal antibodies that could distinguish three forms of alpha 1-proteinase inhibitor (alpha 1-PI): native alpha 1-PI, N-chlorosuccinimide-oxidized alpha 1-PI (Ox-alpha 1-PI) and proteolytically modified alpha 1-PI (alpha 1-PI). Three specific monoclonal antibodies were characterized as to their binding properties. By using the Bio-Dot assay, it was found that all three forms of alpha 1-PI were capable of binding to antibody 6D4-6-18, that only Ox-alpha 1-PI, but not native alpha 1-PI or alpha 1-PI, could bind to antibody 6C7-5, and that alpha 1-PI and a complex between alpha 1-PI and trypsin uniquely were not able to bind to antibody 5C12-8-7. Thus it was concluded that it is possible to use monoclonal antibodies with different epitopic specificities to distinguish two chemically modified forms of alpha 1-PI from the native protein.  相似文献   

20.
Cigarette smoke was found to be rather ineffective in inactivating alpha 1-proteinase inhibitor (alpha 1-PI) in aqueous solution, whereas a slow inactivation of alpha 1-PI by a dimethyl sulfoxide extract of whole cigarette smoke condensate was observed. However, this inactivation could only partially be prevented by antioxidants indicating that it is not, or at least not exclusively, due to oxidation. The bulk of inactive alpha 1-PI found in lung lavage fluids from smokers is thus probably generated through endogenous mechanisms and not through smoke components directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号