首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary chromium (Cr) supplements in casein or yogurt-based diets were fed to genetically obese C57BL/6J-OB (ob/ob) mice to investigate the effects of Cr and yogurt on total hepatic lipid, plasma glucose, insulin, and cholesterol levels. Diet groups were casein control (C), yogurt control (Y), yogurt plus CrCl3 (Y + Cr) (1.83 ppm Cr), and casein plus CrCl3 (C + Cr) (1.85 ppm Cr). Food and water were availablead libitum. No significant differences were observed in final body weight. In obese mice, total hepatic lipid was significantly greater in the C than in the C + Cr group and in the Y than in the Y + Cr group. Plasma immunoreactive insulin levels tended to be lower in animals fed C + Cr and Y + Cr diets. Plasma insulin was significantly correlated with hepatic lipid and with plasma cholesterol. By analysis of variance, bone Cr was elevated by Cr supplementation. In the obese mouse, a model for insulin resistance, Cr supplementation apparently affects both hepatic lipid concentration and bone chromium.  相似文献   

2.
Insulin binding to the plasma membrane is known to be altered by modifying the membrane composition through dietary treatment. As insulin binding receptors are also present on nuclear membrane, this study was undertaken to investigate if specific binding of insulin to the liver nuclei is altered by diet. 8-wk-old female C57 B 6J lean and ob/ob mice were fed semipurified diets containing 20% (w/w) fat of either high or low polyunsaturated-to-saturated (P/S) fatty acid ratio for 4 wk. Liver nuclei were prepared, insulin binding was measured and nuclear phospholipids were isolated for lipid analysis. Insulin binding was highest in nuclei prepared from lean mice fed a high P/S diet. Specific binding of insulin to nuclei prepared from obese mice was also increased by the high P/S diet, but to a lesser extent compared to lean mice. Feeding a high P/S diet increased polyunsaturated fatty acid content of membrane phospholipids from both lean and ob/ob mice. Obese mice were characterized by higher levels of arachidonic acid and lower levels of linoleic acid in phosphatidylcholine. The present study establishes that insulin binding to liver nuclei is increased by feeding a high P/S diet, and that insulin binding to liver nuclei from obese mice is lower than from lean mice.  相似文献   

3.
C57BL/6J obese (ob/ob) and lean mice fed ad libitum on a normal mouse chow diet (Normal), were compared with lean mice of the same age and strain fed ad libitum on a high-fat diet, consisting of the Normal diet with the addition of beef lard (Lard), from age 3 months for 34 days. The lard-fed mice were seen to have significantly higher (P<0.05) body weight in this 34-day period than that of the other two groups fed on the Normal diet. Epididymal fat depot and adipocyte cell size were significantly larger (P<0.05) in the Lard-fed lean mice and in the obese (ob/ob) mice than were those of the Normal-fed lean mice. Dietary Lard intake did not significantly affect concentrations of plasma triglyceride although those of plasma cholesterol were significantly increased (P<0.05). The development of obesity in these Lard-fed mice appeared to be accelerated and significant.  相似文献   

4.
1. The effects of food intake and the fatty acid composition of the diet on the hepatic stearoyl-CoA desaturase activity of obese-hyperglycaemic (ob/ob) mice were investigated. 2. Obese mice fed on a commercial mouse diet, ad libitum, had 6.5-fold more activity per liver cell than had lean mice. 3. On a diet containing 14% corn oil the activity was 65% less in obese mice and 62% less in lean mice compared with animals fed on the commercial diet. 4. Feeding with 14% saturated fat in the diet doubled the activity in lean mice compared with those on the commercial diet, but had no effect on the activity in obese mice. 5. Obese mice fed on the corn-oil diet contained a higher proportion of linoleic acid in the liver lipids than did lean mice fed on the commercial diet, but the acyl-CoA desaturase activity was 125% higher than in the lean mice. 6. Limiting the food intake of obese mice by pair-feeding with lean mice decreased their acyl-CoA desaturase activity when the animals were fed on the saturated-fat diet, but the activity remained 75% higher than in lean mice, whereas in obese mice pair-fed on the corn-oil diet the activity was the same as in lean mice. 7. During starvation the acyl-CoA desaturase activity in livers from obese mice decreased more slowly and proportionately less than in livers from lean mice. 8. It is concluded that increased substrate supply as a result of hyperphagia and not low concentration of linoleic acid is the main factor causing high acyl-CoA desaturase activity in obese mice.  相似文献   

5.
In order to study the effects of diet on fat distribution, circulating leptin levels and ob mRNA expression, diets of different macronutrient composition were fed to lean mice and gold thioglucose-obese mice. A high-fat diet and 2 high-carbohydrate diets, one containing mostly high-glycaemic-index starch and the other containing low-glycaemic-index starch were fed ad libitum for 10 weeks and were compared to standard laboratory chow. Weight gain was attenuated by feeding low-glycaemic-index starch in all mice and by feeding a high-fat diet in lean mice. Reduced adiposity was seen in lean mice fed low-glycaemic-index starch, whereas increased adiposity was seen in both lean and obese mice fed on the high-fat diet. Circulating leptin levels, when corrected for adiposity, were decreased in all mice fed either the high-fat diet or the low-GI diet. In epididymal fat pads, decreased ob mRNA expression was seen after both high-fat and high-glycaemic-index starch feeding. These results show that diet macronutrient composition contributes to the variability of circulating leptin levels by the combined effects of diet on fat distribution and on site-specific changes in ob mRNA expression.  相似文献   

6.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

7.
Diurnal variations in food consumption and plasma concentrations of glucose and insulin were determined at 3-hourly intervals in obese hyperglycaemic mice (C57BL/6J ob/ob) and lean mice (C57BL/6J+/+). In lean mice, food consumption and plasma insulin concentrations increased during the light period and were reduced during the dark period, whereas plasma glucose concentrations were maximal at the beginning of the light period and declined to a minimum during the early dark period. In ob/ob mice, the plasma glucose concentration declined temporarily at the beginning of both the light and the dark period and became elevated towards the ends of these periods, but there were no significant diurnal variations of food consumption or plasma insulin concentrations. These observations indicate differences in the diurnal regulation of glucose homeostasis in lean and ob/ob mice.  相似文献   

8.
This study was designed to investigate the supplemental effects of brewer's yeast on serum glucose and lipids in Chinese adults. Twenty-two participants (8 males and 14 females) were recruited from Pingtung city. Mean age of the group was 51 yr, and fasting values of total cholesterol and glucose were from 3.21 to 6.90 and 4.3 to 6.2 mmol/L, respectively. Before supplementation, a 75 g oral glucose load was administered after an overnight (9 h) fast. Blood was drawn before and at 30, 60, 90, and 120 min after the glucose load. The subjects were randomly assigned into either brewer's yeast or torula yeast group and consumed 10 g yeast powder daily for 12 wk. Brewer's yeast demonstrated a beneficial effect on decreasing serum triacylglycerol values (p<0.05). The brewer's yeast supplemented group had an increment at 0 min (p<0.01) and significant decrements at 60 (p<0.05) and 90 (p<0.01) min of oral glucose tolerance test (OGTT). However, after 12-wk supplementation, torula yeast increased glucose values at both 0 and 30 min (p<0.05) after a glucose load. Brewer's yeast and torula yeast addition significantly altered glucose concentrations at 60 min after the glucose dosage (p<0.05). Brewer's yeast had significantly decreasing effects on insulin output both at 90 (p<0.05) and 120 min (p<0.01) after the glucose load. Likewise, serum insulin contents decreased at 90 min (p<0.01) after supplementation in the group given torula yeast. Brewer's yeast supplementation had beneficial effects both on serum triacylglycerol and on 60-min and 90-min glucose values of OGTT.  相似文献   

9.
Restriction of energy intake significantly reduces mammary tumorigenesis in normal rats exposed to carcinogens. Genetically obese LA/N-cp (corpulent) female rats were given 7,12-dimethylbenz[a]anthracene and fed purified diets ad libitum or restricted to 60% of the ad libitum caloric intake. Phenotypically lean littermates were also fed ad libitum. Obese animals developed large mammary tumors more rapidly than genetically normal rats so that 100% of the animals had tumors in less than 16 weeks. Only 21% of the lean animals developed tumors; the energy restricted obese animals had a tumor incidence of 27%. Although obese rats fed the restricted diet weighed significantly less than those fed ad libitum, percent body fat was not reduced, indicating that lean tissue was affected more. Obese animals were markedly hyperinsulinemic (1003 +/- 193 microunits/ml) and energy restriction reduced this to 328 +/- 41; the lean animals had insulin levels of 12 +/- 2. Tumor-bearing rats had higher insulin levels than rats without tumors. These data suggest that body fatness is not directly associated with risk of carcinogenesis. Lean body mass, adipose tissue mass, and their interaction with insulin in its capacity as a growth factor rather than body fatness per se may be determinants of tumor promotion.  相似文献   

10.
This study evaluates the role of adrenal hormones in the development of hyperinsulinaemia and impaired glucose homeostasis in genetically obese hyperglycaemic C57BL/6J ob/ob mice. Lean (+/?) and obese mice were bilaterally adrenalectomised or sham operated at 5 weeks of age, and glucose tolerance was examined after 7 and 14 days. Adrenalectomy temporarily reduced food intake and body weight gain in lean mice, and improved glucose tolerance without a significant change in plasma insulin concentrations at both intervals studied. In obese mice adrenalectomy permanently reduced body weight gain and food intake to values comparable with lean mice. Glucose tolerance was improved in adrenalectomised obese mice at both intervals studied, resulting in plasma glucose concentrations similar to adrenalectomised lean mice. Plasma insulin concentrations during the tolerance tests were reduced in adrenalectomised obese mice, but remained higher than in lean mice. Adrenalectomy did not improve the poor insulin response to parenteral glucose in obese mice. The results indicate that adrenal hormones play an important role in the development of glucose intolerance and contribute to the hyperinsulinaemia in obese (ob/ob) mice, in part by promoting hyperphagia.  相似文献   

11.
The nature of the dietary component responsible for adipocytes having the ability to respond to Glucose Tolerance Factor (GTF) was investigated. Rats were raised on either a control diet or one of three diets differing only in the protein source (torula yeast, brewer's yeast, or casein). Only in adipocytes from rats fed the torula yeast diet did a GTF fraction prepared from brewer's yeast potentiate the action of suboptimal concentrations of insulin in the incorporation of label fromd-[1-14C]-glucose andd-[U-14C]-glucose into CO2 and fatty acids. It was concluded that this potentiation was not the result of a deficiency of GTF activity in torula yeast, because a GTF fraction prepared from torula yeast had similar insulin potentiating activity. Differences in response among diets were not owing to differences in levels of amino acids or owing to concentrations of 22 (Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, P, Pb S, Se, Si, Sn, Sr, Zn) of the 23 trace elements investigated. The level of Mn, was low in all diets, but particularly low in the torula yeast diet. Mn deficiencies have previously been implicated in perturbations of glucose metabolism, so that it is possible that this deficiency may be responsible for the effects attributed to the torula yeast diet.  相似文献   

12.
Obese gold thioglucose injected mice were reduced to lean control weight by food restriction. When pair fed with lean controls these animals then gained weight (were metabolically more efficient). Serum glucose was also elevated in this group (14.5±0.4 (14)vs 12.1±0.3 mmol/L, p<0.001). If previously obese animals were weight maintained with lean controls (by mild food restriction), serum glucose remained at control levels. The activity of the pyruvate dehydrogenase complex in heart muscle was decreased in both obese and pair fed previously obese, whilst it was similar to that of lean controls in the weight maintained previously obese and in obese mice actually dieted. In all obese and previously obese animals serum insulin was elevated. In hearts from control animals subjected to mild food restriction the pyruvate dehydrogenase complex was activated (11.53±1.80 (5)vs 3.34±0.62 (9) U/g dry weight), despite a reduced serum insulin level (42±2vs 74±10 U/ml, p<0.01). These diverse changes in the proportion of the pyruvate dehydrogenase complex in the active form and insulin levels argue for a persistent alteration in the sensitivity of the pyruvate dehydrogenase complex to insulin in obesity, as well as indicating that glucose metabolism in obese animals is altered by both body weight and diet amount.To whom correspondence should be addressed.  相似文献   

13.
Oxidative and nitrative stress responses resulting from inflammation exacerbate liver injury associated with nonalcoholic steatohepatitis (NASH) by inducing lipid peroxidation and protein nitration. The objective of this study was to investigate whether the anti-inflammatory properties of green tea extract (GTE) would protect against NASH by suppressing oxidative and nitrative damage mediated by proinflammatory enzymes. Obese mice (ob/ob) and their 5-week-old C57BL6 lean littermates were fed 0%, 0.5% or 1% GTE for 6 weeks (n=12-13 mice/group). In obese mice, hepatic lipid accumulation, inflammatory infiltrates and serum alanine aminotransferase activity were markedly increased, whereas these markers of hepatic steatosis, inflammation and injury were significantly reduced among obese mice fed GTE. GTE also normalized hepatic 4-hydroxynonenal and 3-nitro-tyrosine (N-Tyr) concentrations to those observed in lean controls. These oxidative and nitrative damage markers were correlated with alanine aminotransferase (P<.05; r=0.410-0.471). Improvements in oxidative and nitrative damage by GTE were also associated with lower hepatic nicotinamide adenine dinucleotide phosphate oxidase activity. Likewise, GTE reduced protein expression levels of hepatic myeloperoxidase and inducible nitric oxide synthase and decreased the concentrations of nitric oxide metabolites. Correlative relationships between nicotinamide adenine dinucleotide phosphate oxidase and hepatic 4-hydroxynonenal (r=0.364) as well as nitric oxide metabolites and N-Tyr (r=0.598) suggest that GTE mitigates lipid peroxidation and protein nitration by suppressing the generation of reactive oxygen and nitrogen species. Further study is warranted to determine whether GTE can be recommended as an effective dietary strategy to reduce the risk of obesity-triggered NASH.  相似文献   

14.
Objective: Adiponectin influences insulin sensitivity (SI) and fat oxidation. Little is known about changes in adiponectin with changes in the fat content of eucaloric diets. We hypothesized that dietary fat content may influence adiponectin according to an individual's SI. Research Methods and Procedures: We measured changes in adiponectin, insulin, glucose, and leptin in response to high‐fat (HF) and low‐fat (LF) eucaloric diets in lean (n = 10) and obese (n = 11) subjects. Obese subjects were further subdivided in relation to a priori SI. Results: We found significantly higher insulin, glucose, and leptin and lower adiponectin in obese vs. lean subjects during both HF and LF. The mean group values of these measurements, including adiponectin (lean, HF 21.9 ± 9.8; LF, 20.8 ± 6.6; obese, HF 10.0 ± 3.3; LF, 9.5 ± 2.3 ng/mL; mean ± SD), did not significantly change between HF and LF diets. However, within the obese group, the insulin‐sensitive subjects had significantly higher adiponectin during HF than did the insulin‐resistant subjects. Additionally, the change in adiponectin from LF to HF diet correlated positively with the obese subjects’ baseline SI. Discussion: Although in lean and obese women, group mean values for adiponectin did not change significantly with a change in fat content of a eucaloric diet, a priori measured SI in obese subjects predicted an increase in adiponectin during the HF diet; this may be a mechanism that preserves SI in an already obese group.  相似文献   

15.
Glucocorticoids (GCs) are often prescribed in clinics but many adverse effects are also attributed to GCs. It is important to determine the role of GCs in the development of those adverse effects. Here, we investigated the impact of GCs on trivalent chromium (Cr) distribution in animals. Cr has been proposed to be important for proper insulin sensitivity, and deficits may lead to disruption of metabolism. For comparison, the effect of a high-fat diet on Cr modulation was also evaluated. C57BL/6JNarl mice were fed regular or high-fat diets for 12 weeks and further grouped for treatment with prednisolone or saline. Cr levels in tissues were determined 12 h after the treatments. Interestingly, prednisolone treatment led to significantly reduced Cr levels in fat tissue in mice fed regular diets; compared to the high-fat diet alone, prednisolone plus the high-fat diet led to a further reduction in Cr levels in the liver, muscle, and fat. Notably, a single dose of prednisolone was linked with elevated Cr levels in the thigh bones of mice fed by either regular or high-fat diets. In conclusion, this report has provided evidence that prednisolone in combination with a high-fat diet effects modulation of Cr levels in selected tissues.  相似文献   

16.
Conjugated linoleic acid (CLA) causes insulin resistance and hepatic steatosis in conjunction with depletion of adipokines in some rodent models. Our objective was to determine whether the maintenance of adipokines, mainly leptin and adiponectin, by either removing CLA from diets or using an adiponectin enhancer, rosiglitazone (ROSI), could attenuate CLA-induced insulin resistance. Male C57BL/6 mice were consecutively fed two experimental diets containing 1.5% CLA mixed isomer for 4 weeks followed by a diet without CLA for 4 weeks. CLA significantly depleted adiponectin but not leptin and was accompanied by hepatic steatosis and insulin resistance. These effects were attenuated after switching mice to the diet without CLA along with restoration of adiponectin. To further elucidate the role of adiponectin in CLA-mediated insulin resistance, ROSI was used in a subsequent study in male ob/ob mice fed either control (CON) or CLA diet. ROSI maintained significantly higher adiponectin levels in CON- and CLA-fed mice and prevented the depletion of epididymal adipose tissue and the development of insulin resistance. In conclusion, we show that insulin resistance induced by CLA may be related more to adiponectin depletion than to leptin and that maintaining adiponectin levels alone either by removing CLA or using ROSI can attenuate these effects.  相似文献   

17.
The lipolytic response of isolated adipocytes from genetic obese (C57/BL/64 ob/ob) and lean (C57BL/6J +/?) mice to ACTH-(1-24), isoproterenol and glucagon has been studied. The mean cell idameter of adipocytes form ob/ob mice was approximately twice that of lean controls. The adipocytes from obese mice contained on the average approximately six times the amount of triacylglycerol present in the smaller lean mouse adipocyte. Lipolysis was calculated both on a per cell basis (10(5) cells) and per mu mole of triacylglycerol and when expressed on a cell number basis, the larger adipocytes from obese mice showed an ACTH-(1-24) stimulated glycerol release which was quantitatively similar to that of smaller adipocytes from lean mice. When expressed per mu mole of triacylglycerol, the smaller cells from lean animals appeared to be dramatically more responsive to either isoproterenol or ACTH-(1-24). On either basis, ACTH-(1-24) stimulated glycerol release from obese mouse cells was greater than the isoproterenol response. The obese mouse of adipocyte showed selective loss of response to isoproterenol compared to its lean control.  相似文献   

18.
Objective: Chromium has gained popularity as a nutritional supplement for diabetic patients. This study evaluated the effect of chronic administration of a chromium complex of d ‐phenylalanine (Cr(d ‐phe)3) on glucose and insulin tolerance in obese mice. The study tested the hypothesis that Cr(d ‐phe)3 suppresses endoplasmic reticulum (ER) stress and insulin resistance in these animals. Methods and Procedures: C57BL lean and ob/ob obese mice were randomly divided to orally receive vehicle or Cr(d ‐phe)3 (3.8 μg of elemental chromium/kg/day) for 6 months. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Protein levels of phosphorylated pancreatic ER kinase (PERK), α subunit of translation initiation factor 2 (eIF2α) and inositol‐requiring enzyme‐1 (IRE‐1), p‐c‐Jun, and insulin receptor substrate‐1 (IRS‐1) phosphoserine‐307 were assessed by western blotting. In vitro ER stress was induced by treating cultured muscle cells with thapsigargin in the presence or absence of Cr(d ‐phe)3. Results: ob/ob mice showed poor glucose and insulin tolerance compared to the lean controls, which was attenuated by Cr(d ‐phe)3. Markers of insulin resistance (phospho‐c‐Jun and IRS‐1 phosphoserine) and ER stress (p‐PERK, p‐IRE‐1, p‐eIF2α), which were elevated in ob/ob mice, were attenuated following Cr(d ‐phe)3 treatment. Chromium treatment was also associated with a reduction in liver triglyceride levels and lipid accumulation. In cultured myotubes, Cr(d ‐phe)3 attenuated ER stress induced by thapsigargin. Discussion: Oral Cr(d ‐phe)3 treatment reduces glucose intolerance, insulin resistance, and hepatic ER stress in obese, insulin‐resistant mice.  相似文献   

19.
This study was designed to test that dietary conjugated linoleic acids (CLA) used in a mixture of cis-9,trans-11 and trans-10, cis-12 isomers (40% each in weight) coupled to poly(ethylene glycol) (PEG) as PEGylated CLA (PCLA) act as mediators inducing or inhibiting specific metabolic pathways in high-fat (HF)-fed obese C57BL/6J (ob/ob) mice. After an acclimatization period of 7 days, animals were given a normal (control) or HF diet, the latter being added either alone (HF) or with CLA, PEG or PCLA for 6 weeks. Although the food intakes were not different among the dietary groups, final body weights were significantly lower in the HF-PCLA group than in the HF group. Also the HF-PCLA diet strongly prevented the dramatic increase in blood low-density lipoprotein cholesterol observed with the HF diet, with no difference in high-density lipoprotein cholesterol between control, HF and HF-PCLA treatments. Furthermore, homeostasis model assessment levels showed a marked decrease in HF-PCLA-fed mice, preventing the increase found in mice fed the HF diet, and suggesting that PCLA lowered insulin resistance in HF-mice. The liver steatosis observed in mice fed the HF diet was also prevented by PCLA. Interestingly, the activity of mitochondrial glutathione peroxidase was increased by PCLA, which may enhance antioxidant defenses. Overall, PCLA exerted its beneficial effects through reduction of lipid accumulation and attenuation of insulin resistance induced by the HF diet in obese C57BL/6J (ob/ob) mice, which might confer to these products antiobesity properties in other species.  相似文献   

20.

Objective

Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans.

Methods

Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression.

Results

In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals.

Conclusions

We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号