首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Ins(1,4,5)P3 5-phosphatase catalyses the dephosphorylation of Ins(1,4,5)P3 in the 5 position. At 1 microM Ins(1,4,5)P3, 10-15% of total activity of a bovine brain homogenate was measured in the soluble fraction, whereas 85-90% was in the particulate fraction. Particulate activity could be solubilized by cholate or, to a lower extent, by 2 M KCl. Two soluble enzymes (type I and type II) could be fractionated by DEAE-Sephacel chromatography. Soluble activities have been further purified by blue-Sepharose, Sephacryl S-200 and phosphocellulose chromatography. Specific activities reached 10-30 mumol.min-1 mg protein-1 for type I and were 10-20 times lower for type II. Type I and type II Ins(1,4,5)P3 5-phosphatase displayed different Km values and molecular masses, as estimated by gel filtration. Type I dephosphorylated both Ins(1,4,5)P3 and Ins(1,3,4,5)P4; in contrast, type II specifically dephosphorylated Ins(1,4,5)P3 but not Ins(1,3,4,5)P4. Type I Ins(1,4,5)P3 5-phosphatase eluted as a single peak of activity with an apparent molecular mass of 51 kDa when gel filtration was performed in the presence of cholate. This molecular mass is identical to the molecular mass estimated for the particulate Ins(1,4,5)P3 5-phosphatase that was solubilized by cholate. Km values for Ins(1,4,5)P3 and Ins(1,3,4,5)P4 obtained with type I Ins(1,4,5)P3 5-phosphatase were 11 microM and 1 microM, respectively. Similar values were obtained with particulate Ins(1,4,5)P3 5-phosphatase. In conclusion, the catalytic domains of type I and particulate Ins(1,4,5)P3 5-phosphatase activity may be very similar, if not identical, but different from type II phosphatase.  相似文献   

2.
A kinetic analysis was undertaken of the inhibition by 5 mM MgATP of Ins(1,4,5)P3 5-phosphatase in 100,000 g particulate fractions prepared from liver homogenates. The Km for Ins(1,4,5)P3 was increased by 44% (from 16 to 23 microM). The competitive nature of the inhibition was confirmed with a Dixon plot. The effect of MgATP on 5-phosphatase was also studied at physiological concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 (i.e. 1.5 microM); the rate of substrate hydrolysis was inhibited by over 30%. Ins(1,3,4,5)P4 was also hydrolysed by a 3-phosphatase, but this enzyme was unaffected by 5 mM MgATP. Thus, ATP, by differentially affecting Ins(1,3,4,5)P4 3- and 5-phosphatase, may increase the flux through the futile cycle that interconverts Ins(1,4,5)P3 and Ins(1,3,4,5)P4.  相似文献   

3.
Membrane-bound inositolpolyphosphate 5-phosphatase was solubilized and highly purified from a microsomal fraction of rat liver. Its physiochemical and enzymological properties were compared with those of highly purified preparations of two types of soluble enzyme (soluble Type I and Type II) from rat brain. The molecular masses of the membrane-bound and soluble Type I enzymes were 32 kDa, while that of soluble Type II enzyme was 69 kDa, as determined by molecular sieve chromatography. The membrane-bound and soluble Type I enzymes showed similar broad peaks on isoelectric focusing (pI 5.8-6.4), while soluble Type II enzyme showed multiple peaks in the region between pI 4.0-5.8. All three enzymes required divalent cation for activity. Mg2+ was the most effective for both the membrane-bound and soluble Type I enzymes, while Co2+ enhanced soluble Type II enzyme activity about 1.5-fold relative to Mg2+ at 1 mM. The optimal pH of both the membrane-bound and soluble Type I enzymes was 7.8, while that of soluble Type II was 6.8. The Km values for inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] of all three enzymes were similar (5-8 microM), but those for inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] were quite different, the Km values of membrane-bound and soluble Type I enzymes being 0.8 microM, while that of soluble Type II was 130 microM. These similarities between the membrane-bound and soluble Type I enzymes suggest that these two molecules may be the same protein, and that concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, both of which are considered to play critical roles in the regulation of intracellular Ca2+-concentration, may be differently regulated by two functionally distinct enzymes.  相似文献   

4.
We have identified, isolated, and characterized a second inositol polyphosphate-5-phosphatase enzyme from the soluble fraction of human platelets. The enzyme hydrolyzes inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) to inositol 1,4-bisphosphate (Ins(1,4)P2) with an apparent Km of 24 microM and a Vmax of 25 mumol of Ins(1,4,5)P3 hydrolyzed/min/mg of protein. The enzyme hydrolyzes inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) at a rate of 1.3 mumol of Ins(1,3,4,5)P4 hydrolyzed/min/mg of protein with an apparent Km of 7.5 microM. The enzyme also hydrolyzes inositol 1,2-cyclic 4,5-trisphosphate (cIns(1:2,4,5)P3) and Ins(4,5)P2. We purified this enzyme 2,200-fold from human platelets. The enzyme has a molecular mass of 75,000 as determined by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel filtration chromatography. The enzyme requires magnesium ions for activity and is not inhibited by calcium ions. The 75-kDa inositol polyphosphate-5-phosphatase enzyme differs from the previously identified platelet inositol polyphosphate-5-phosphatase as follows: molecular size (75 kDa versus 45 kDa), affinity for Ins(1,3,4,5)P4 (Km 7.5 microM versus 0.5 microM), Km for Ins(1,4,5)P3 (24 microM versus 7.5 microM), regulation by protein kinase C, wherein the 45-kDa enzyme is phosphorylated and activated while the 75-kDa enzyme is not. The 75-kDa enzyme is inhibited by lower concentrations of phosphate (IC50 2 mM versus 16 mM for the 45-kDa enzyme) and is less inhibited by Ins(1,4)P2 than is the 45-kDa enzyme. The levels of inositol phosphates that act in calcium signalling are likely to be regulated by the interplay of these two enzymes both found in the same cell.  相似文献   

5.
Dictyostelium discoideum homogenates contain phosphatase activity which rapidly dephosphorylates Ins(1,4,5)P3 (D-myo-inositol 1,4,5-trisphosphate) to Ins (myo-inositol). When assayed in Mg2+, Ins(1,4,5)P3 is dephosphorylated by the soluble Dictyostelium cell fraction to 20% Ins(1,4)P2 (D-myo-inositol 1,4-bisphosphate) and 80% Ins(4,5)P2 (D-myo-inositol 4,5-bisphosphate). In the particulate fraction Ins(1,4,5)P3 5-phosphatase is relatively more active than the Ins(1,4,5)P3 1-phosphatase. CaCl2 can replace MgCl2 only for the Ins(1,4,5)P3 5-phosphatase activity. Ins(1,4)P2 and Ins(4,5)P2 are both further dephosphorylated to Ins4P (D-myo-inositol 4-monophosphate), and ultimately to Ins. Li+ ions inhibit Ins(1,4,5)P3 1-phosphatase, Ins(1,4)P2 1-phosphatase, Ins4P phosphatase and L-Ins1P (L-myo-inositol 1-monophosphate) phosphatase activities; Ins(1,4,5)P3 1-phosphatase is 10-fold more sensitive to Li+ (half-maximal inhibition at about 0.25 mM) than are the other phosphatases (half-maximal inhibition at about 2.5 mM). Ins(1,4,5)P3 5-phosphatase activity is potently inhibited by 2,3-bisphosphoglycerate (half-maximal inhibition at 3 microM). Furthermore, 2,3-bisphosphoglycerate also inhibits dephosphorylation of Ins(4,5)P2. These characteristics point to a number of similarities between Dictyostelium phospho-inositol phosphatases and those from higher organisms. The presence of an hitherto undescribed Ins(1,4,5)P3 1-phosphatase, however, causes the formation of a different inositol bisphosphatase isomer [Ins(4,5)P2] from that found in higher organisms [Ins(1,4)P2]. The high sensitivity of some of these phosphatases for Li+ suggests that they may be the targets for Li+ during the alteration of cell pattern by Li+ in Dictyostelium.  相似文献   

6.
The metabolism of myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] consists of two pathways: dephosphorylation by 5-phosphomonoesterase(s) produces inositol 1,4-bisphosphate, and phosphorylation by Ins(1,4,5)P3 3-kinase yields inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The requirements for Ins(1,4,5)P3 kinase activity in retina were characterized. Apparent Km values for ATP and Ins(1,4,5)P3 are 1.4 mM and 1.3 microM respectively. A direct demonstration of phosphorylation of Ins(1,4,5)P3 by [gamma-32P]ATP was achieved. Characterization of the 32P-labelled product revealed that it had the expected chromatographic and electrophoretic properties of Ins(1,3,4,5)P4.  相似文献   

7.
D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate [D-6-deoxy-Ins(1,3,4,5)P(4)] 3 is a novel deoxygenated analogue of D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)] 2, a central and enigmatic molecule in the polyphosphoinositide pathway of cellular signalling. D-6-Deoxy-Ins(1,3,4,5)P(4) is a moderate inhibitor of Ins(1,4,5)P(3) 5-phosphatase [1.8microM] compared to Ins(1,3,4,5)P(4) [0.15microM] and similar to that of L-Ins(1,3,4,5)P(4) [1.8microM]. In displacement of [(3)H] Ins(1,4,5)P(3) from the rat cerebellar Ins(1,4,5)P(3) receptor, while slightly weaker [IC(50)=800nM] than that of D-Ins(1,3,4,5)P(4) [IC(50)=220nM], 3 is less markedly different and again similar to that of L-Ins(1,3,4,5)P(4) [IC(50)=660nM]. 3 is an activator of I(CRAC) when inward currents are measured in RBL-2H3-M1 cells using patch-clamp electrophysiological techniques with a facilitation curve different to that of Ins(1,3,4,5)P(4). Physicochemical properties were studied by potentiometric (31)P and (1)H NMR titrations and were similar to those of Ins(1,3,4,5)P(4) apart from the observation of a biphasic titration curve for the P1 phosphate group. A novel vicinal phosphate charge-induced conformational change of the inositol ring above pH 10 was observed for D-6-deoxy-Ins(1,3,4,5)P(4) that would normally be hindered because of the central stabilising role played by the 6-OH group in Ins(1,3,4,5)P(4). We conclude that the 6-OH group in Ins(1,3,4,5)P(4) is crucial for its physicochemical behaviour and biological properties of this key inositol phosphate.  相似文献   

8.
Inositol 1,3,4,5-tetrakisphosphates (Ins(1,3,4,5)P4), 32P-labelled in positions 4 and 5 were prepared enzymatically, using [4-32P]-phosphatidylinositol 4-phosphate (PtdInsP) and [5-32P]phosphatidylinositol 4,5-bisphosphate (PtdInsP2) as substrates, respectively. Degradation studies of Ins(1,3,4,5)P4, using an enriched phosphatase preparation from porcine brain cytosol, led to the formation of two inositol trisphosphate isomers which were identified as inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). This novel degradation pathway of Ins(1,3,4,5)P4 to Ins(1,4,5)P3 provides an additional source for the generation of Ins(1,4,5)P3, involving a 3-phosphatase.  相似文献   

9.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

10.
The analysis of the inositol cycle in Dictyostelium discoideum cells is complicated by the limited uptake of [3H]inositol (0.2% of the applied radioactivity in 6 h), and by the conversion of [3H]inositol into water-soluble inositol metabolites that are eluted near the position of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on anion-exchange h.p.l.c. columns. The uptake was improved to 2.5% by electroporation of cells in the presence of [3H]inositol; electroporation was optimal at two 210 microseconds pulses of 7 kV. Cells remained viable and responsive to chemotactic signals after electroporation. The intracellular [3H]inositol was rapidly metabolized to phosphatidylinositol and more slowly to phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. More than 85% of the radioactivity in the water-soluble extract that was eluted on Dowex columns as Ins(1,4,5)P3 did not co-elute with authentic [32P]Ins(1,4,5)P3 on h.p.l.c. columns. Chromatography of the extract by ion-pair reversed-phase h.p.l.c. provided a good separation of the polar inositol polyphosphates. Cellular [3H]Ins(1,4,5)P3 was identified by (a) co-elution with authentic [32P]Ins(1,4,5)P3 and (b) degradation by a partially purified Ins(1,4,5)P3 5-phosphatase from rat brain. The chemoattractant cyclic AMP and the non-hydrolysable analogue guanosine 5'-[gamma-thio]triphosphate induced a transient accumulation of radioactivity in Ins(1,4,5)P3; we did not detect radioactivity in inositol 1,3,4-trisphosphate or inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In vitro, Ins(1,4,5)P3 was metabolized to inositol 1,4- and 4,5-bisphosphate, but not to Ins(1,3,4,5)P4 or another tetrakisphosphate isomer. We conclude that Dictyostelium has a receptor- and G-protein-stimulated inositol cycle which is basically identical with that in mammalian cells, but the metabolism of Ins(1,4,5)P3 is probably different.  相似文献   

11.
Anion-exchange h.p.l.c. analysis of [3H]inositol phosphates derived from glucose-stimulated isolated pancreatic islets that had been prelabelled with myo-[3H]inositol revealed that the predominant inositol trisphosphate was the 1,3,4-isomer [Ins(1,3,4)P3]. The 1,4,5-isomer [Ins(1,4,5)P3] was also detectable, as was a more polar inositol phosphate with the chromatographic properties of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. Glucose-induced accumulation of Ins(1,3,4)P3 was augmented by Li+ and occurred after maximal accumulation of Ins(1,4,5)P3. These findings suggest a possible role for Ins(1,3,4)P3 or its probable precursor Ins(1,3,4,5)P4 in stimulus-secretion coupling in pancreatic islets.  相似文献   

12.
1. We have studied the metabolism of Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) by rat liver homogenates incubated in a medium resembling intracellular ionic strength and pH. 2. Ins(1,3,4,5)P4 was dephosphorylated to a single inositol trisphosphate product, Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate), the identity of which was confirmed by periodate degradation, followed by reduction and dephosphorylation to yield altritol. 3. The major InsP2 (inositol bisphosphate) product was inositol 3,4-bisphosphate [Shears, Storey, Morris, Cubitt, Parry, Michell & Kirk (1987) Biochem. J. 242, 393-402]. Small quantities of a second InsP2 product was also detected in some experiments, but its isomeric configuration was not identified. 4. The Ins(1,3,4,5)P4 5-phosphatase activity was primarily associated with plasma membranes. 5. ATP (5 mM) decreased the membrane-associated Ins(1,4,5)P3 5-phosphatase and Ins(1,3,4,5)P4 5-phosphatase activities by 40-50%. This inhibition was imitated by AMP, adenosine 5'-[beta gamma-imido]triphosphate, adenosine 5'-[gamma-thio]triphosphate or PPi, but not by adenosine or Pi. A decrease in [ATP] from 7 to 3 mM halved the inhibition of Ins(1,3,4,5)P4 5-phosphatase activity, but the extent of inhibition was not further decreased unless [ATP] less than 0.1 mM. 6. Ins(1,3,4,5)P4 5-phosphatase was insensitive to 50 mM-Li+, but was inhibited by 5 mM-2,3-bisphosphoglycerate. 7. The Ins(1,3,4,5)P4 5-phosphatase activity was unchanged by cyclic AMP, GTP, guanosine 5'-[beta gamma-imido]triphosphate or guanosine 5'-[gamma-thio]triphosphate, or by increasing [Ca2+] from 0.1 to 1 microM. 8. Ins(1,3,4)P3 was phosphorylated in an ATP-dependent manner to an isomer of InsP4 that was partially separable on h.p.l.c. from Ins(1,3,4,5)P4. The novel InsP4 appears to be Ins(1,3,4,6)P4. Its metabolic fate and function are not known.  相似文献   

13.
1. myo-[3H]Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], when added to lysed platelets, was rapidly converted into [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], which was in turn converted into [3H]inositol 1,3,4-trisphosphate [Ins(1,3,4)P3]. This result demonstrates that platelets have the same metabolic pathways for interconversion of inositol polyphosphates that are found in other cells. 2. Labelling of platelets with [32P]Pi, followed by h.p.l.c., was used to measure thrombin-induced changes in the three inositol polyphosphates. Interfering compounds were removed by a combination of enzymic and non-enzymic techniques. 3. Ins(1,4,5)P3 was formed rapidly, and reached a maximum at about 4 s. It was also rapidly degraded, and was no longer detectable after 30-60 s. 4. Formation of Ins(1,3,4,5)P4 was almost as rapid as that of Ins(1,4,5)P3, and it remained detectable for a longer time. 5. Ins(1,3,4)P3 was formed after an initial lag, and this isomer reached its maximum, which was 10-fold higher than that of Ins(1,4,5)P3, at 30 s. 6. Comparison of the intracellular Ca2+ concentration as measured with fura-2 indicates that agents other than Ins(1,4,5)P3 are responsible for the sustained maintenance of a high concentration of intracellular Ca2+. It is proposed that either Ins(1,3,4)P3 or Ins(1,3,4,5)P4 may also be Ca2+-mobilizing agents.  相似文献   

14.
The 43 kDa inositol polyphosphate 5-phosphatase (5-phosphatase) hydrolyses the second messenger molecules inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. We have underexpressed the 43 kDa 5-phosphatase by stably transfecting normal rat kidney cells with the cDNA encoding the enzyme, cloned in the antisense orientation into the tetracycline-inducible expression vector pUHD10-3. Antisense-transfected cells demonstrated a 45% reduction in Ins(1,4,5)P3 5-phosphatase activity in the total cell homogenate upon withdrawal of tetracycline, and an approximately 80% reduction in the detergent-soluble membrane fraction of the cell, as compared with antisense-transfected cells in the presence of tetracycline. Unstimulated antisense-transfected cells showed a concomitant 2-fold increase in Ins(1,4,5)P3 and 4-fold increase in Ins(1,3,4,5)P4 levels. The basal intracellular calcium concentration of antisense-transfected cells (170 +/- 25 nM) was increased 1.9-fold, compared with cells transfected with vector alone (90 +/- 25 nM). Cells underexpressing the 43 kDa 5-phosphatase demonstrated a transformed phenotype. Antisense-transfected cells grew at a 1.7-fold faster rate, reached confluence at higher density and demonstrated increased [3H]thymidine incorporation compared with cells transfected with vector alone. Furthermore, antisense-transfected cells formed colonies in soft agar and tumours in nude mice. These studies support the contention that a decrease in Ins(1,4,5)P3 5-phosphatase activity is associated with cellular transformation.  相似文献   

15.
The accumulation of inositol polyphosphates in the cerebellum in response to agonists has not been demonstrated. Guinea pig cerebellar slices prelabeled with [3H]inositol showed the following increases in response to 1 mM serotonin: At 15 s, there was a peak in 3H label in the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], decreasing to a lower level in about 1 min. The level of 3H label in the putative second-messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] increased rapidly up to 60 s and increased slowly thereafter. The accumulation of 3H label in various inositol phosphate isomers at 10 min, when steady state was obtained, showed the following increases due to serotonin: inositol 1,3,4-trisphosphate [Ins(1,3,4)P3], eight-fold; Ins(1,3,4,5)P4, 6.4-fold; Ins(1,4,5)P3, 75%; inositol 1,4-bisphosphate [Ins(1,4)P2], 0%; inositol 3,4-bisphosphate, 100%; inositol 1-phosphate/inositol 3-phosphate, 30%; and inositol 4-phosphate, 40%. [3H]Inositol 1,3-bisphosphate was not detected in controls, but it accounted for 7.2% of the total inositol bisphosphates formed in the serotonin-stimulated samples. The fact that serotonin did not increase the formation of Ins(1,4)P2 could be due to the fact that Ins(1,4)P2 is rapidly degraded or that Ins(1,4,5)P3 is metabolized primarily by Ins(1,4,5)P3-3'kinase to form Ins(1,3,4,5)P4. In the presence of pargyline (10 microM), [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 levels were increased, even at 1 microM serotonin. Ketanserin (7 microM) completely inhibited the serotonin effect, indicating stimulation of serotonin2 receptors. Quisqualic acid (100 microM) also increased the levels of [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3, but the profile of these increases was different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,4-bisphosphate [Ins(1,4)P2] phosphatase activities were measured in both 180,000 g (60 min) particulate and supernatant fractions of rat brain homogenates. Although Ins(1,4,5)P3 was mostly hydrolysed by a particulate phosphatase [Erneux, Delvaux, Moreau & Dumont (1986) Biochem. Biophys. Res. Commun. 134, 351-358], Ins(1,4)P2 phosphatase was predominantly soluble. The latter enzyme was Mg2+-dependent and sensitive to thiol-blocking agents (e.g. p-hydroxymercuribenzoate). In contrast with Ins(1,4,5)P3 phosphatase activity measured in the soluble fraction, Ins(1,4)P2 phosphatase was insensitive to 0.001-1 mM-2,3-bisphosphoglycerate. Lithium salts, widely used in psychiatric treatment, inhibited both Ins(1,4)P2 and Ins(1)P1 phosphatase activities of the crude soluble fraction. In particular, 50% inhibition of phosphatase activity, with 2 microM-Ins(1,4)P2 as substrate, was achieved at 3-5 mM-LiCl. At these concentrations, LiCl did not change Ins(1,4,5)P3 phosphatase activity measured in the same fraction with 1-4 microM-Ins(1,4,5)P3 as substrate. Chromatography of the soluble fraction of a rat brain homogenate on DEAE-cellulose resolved three phosphatase activities. These forms, peaks I, II and III, dephosphorylated Ins(1,4,5)P3, Ins(1)P1 and Ins(1,4)P2 respectively. If LiCl (10 mM) was included in the assay mixture, it inhibited both peak-II Ins(1)P1 phosphatase and peak-III Ins(1,4)P2 phosphatase, suggesting the existence of at least two Li+-sensitive phosphatases.  相似文献   

17.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

18.
Turkey erythrocytes contain soluble and particulate kinase activities which catalyse the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The particle-bound activity accounts for approximately one-quarter of the total cellular Ins(1,4,5)P3 kinase, when assayed at a [Ca2+] of 10 nM. The particle-bound Ins(1,4,5)P3 kinase is not washed from the membrane by 0.6 M-KCl, yet may be solubilized by a variety of detergents. This suggests that it is an intrinsic membrane protein. The product of the membrane-bound Ins(1,4,5)P3 kinase is inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], identifying the enzyme as an Ins(1,4,5)P3 3-kinase. In the presence of calmodulin, the membrane-associated Ins(1,4,5)P3 3-kinase is activated as [Ca2+] is increased over the range 0.2-1.0 microM. Under these conditions, the rates of dephosphorylation of Ins(1,3,4,5)P4 and Ins(1,4,5)P3 by phosphatases in the membrane fraction are unchanged.  相似文献   

19.
Two soluble forms of inositol phosphate 5-phosphomonoesterase have been partially purified and characterized from rat brain and are referred to as type 1 and type 2 according to their order of elution from DEAE-Sepharose. Together, these enzymes represent 26 +/- 3% (mean +/- S.E., n = 4) of the total inositol 1,4,5-triphosphate (Ins(1,4,5)P3) phosphatase activity assayed in crude brain homogenate and are present in approximately equal total activities in a 100,000 x g supernatant, with the remainder being membrane-bound. Both soluble enzymes require Mg2+ for activity, are moderately inhibited by Ca2+ in the micromolar range, and can be inhibited by millimolar concentrations of a variety of phosphorylated compounds. The type 1 enzyme has been purified to a specific activity of 1.06 mumol/min/mg protein. It elutes as a 60-kDa protein on Sephacryl S-200. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the type 1 enzyme correlates with a pair of protein bands of 66 and 60 kDa. It has apparent Km values of 3 and 0.8 microM for Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), respectively, and hydrolyses Ins(1,4,5)P3 approximately 12 times faster than Ins(1,3,4,5)P4. The type 2 enzyme has been purified to a specific activity of 15.2 mumol/min/mg protein, elutes as a protein of 160 kDa on Sephacryl S-300, and migrates as a similarly sized subunit on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It has an apparent Km for Ins(1,4,5)P3 of 18 microM. Its apparent Km for Ins(1,3,4,5)P4, however, is greater than 150 microM, suggesting that this enzyme is primarily an Ins(1,4,5)P3 5-phosphomonoesterase. The relationship of these two enzymes to the inositol tris/tetrakisphosphate pathway is discussed.  相似文献   

20.
Dephosphorylation of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was measured in both the soluble and the particulate fractions of rat brain homogenates. Analysis of the hydrolysis of [4,5-32P]Ins(1,3,4,5)P4 showed that for both fractions the 5-phosphate of Ins(1,3,4,5)P4 was removed and inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] was specifically produced. In the soluble fraction, Ins(1,3,4)P3 was further hydrolysed at the 1-phosphate position to inositol 3,4-bisphosphate[Ins(3,4)P2]. DEAE-cellulose chromatography of the soluble fraction separated the phosphatase activities into three peaks. The first hydrolysed both Ins(1,3,4,5)P4 and inositol 1,4,5-trisphosphate, the second inositol 1-phosphate and the third Ins(1,3,4)P3 and inositol 1,4-bisphosphate, [Ins(1,4)P2]. Further purification of the third peak on either Sephacryl S-200 or Blue Sepharose could not dissociate these two activities [i.e. with Ins(1,4)P2 and Ins(1,3,4)P3 as substrates]. The dephosphorylation of Ins(1,3,4)P3 could be inhibited by the addition of Li+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号