首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Mammalian sperm must undergo a physiological maturation, termed capacitation, before they are able to fertilize eggs. Despite its importance, the molecular mechanisms underlying capacitation are poorly understood. In this paper, we describe the capacitation phenotype of sperm lacking the long isoform of beta1,4-galactosyltransferase I (GalT I), a sperm surface protein that functions as a receptor for the zona pellucida glycoprotein, ZP3, and as an inducer of the acrosome reaction following ZP3-dependent aggregation. As expected, wild-type sperm must undergo capacitation in order to bind the zona pellucida and undergo a Ca(2+) ionophore-induced acrosome reaction. By contrast, GalT I-null sperm behave as though they are precociously capacitated, in that they demonstrate maximal binding to the zona pellucida and greatly increased sensitivity to ionophore-induced acrosome reactions without undergoing capacitation in vitro. The loss of GalT I from sperm results in an inability to bind epididymal glycoconjugates that normally maintain sperm in an 'uncapacitated' state; removing these decapacitating factors from wild-type sperm phenocopies the capacitation behavior of GalT I-null sperm. Interestingly, capacitation of GalT I-null sperm is independent of the presence of albumin, Ca(2+) and HCO(3)(-); three co-factors normally required by wild-type sperm to achieve capacitation. This implies that intracellular targets of albumin, Ca(2+) and/or HCO(3)(-) may be constitutively active in GalT I-null sperm. Consistent with this, GalT I-null sperm have increased levels of cAMP that correlate closely with both the accelerated kinetics and co-factor-independence of GalT I-null sperm capacitation. By contrast, the kinetics of protein tyrosine phosphorylation and sperm motility are unaltered in mutant sperm relative to wild-type. These data suggest that GalT I may function as a negative regulator of capacitation in the sperm head by suppressing intracellular signaling pathways that promote this process.  相似文献   

2.
Profile of a mammalian sperm receptor   总被引:19,自引:0,他引:19  
Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.  相似文献   

3.
Recent studies of mouse fertilization have identified two complementary gamete receptors that mediate sperm-egg binding. Sperm surface β1,4-galactosyltransferase (GalTase) binds to specific oligosaccharides of the egg coat (zona pellucida) glycoprotein ZP3. Evidence suggests that these same molecules may stimulate the acrosome reaction in sperm. After the acrosome reaction, it is thought that sperm remain adherent to the zona by binding another glycoprotein, ZP2. The acrosome-reacted sperm releases hydrolytic enzymes, including acrosin and N-acetylglucosaminidase, enabling it to penetrate the zona pellucida. After the penetrating sperm binds to the egg membrane and activates development, N-acetylglucosaminidase is exocytosed from egg cortical granules and, as part of the zona block to polyspermy, globally removes the sperm GalTase binding site from ZP3 oligosaccharides.  相似文献   

4.
Species-restricted interaction between gametes at the beginning of fertilization is mediated by the extracellular coat of the egg, a matrix of cross-linked glycoprotein filaments called the zona pellucida (ZP) in mammals and the vitelline envelope in nonmammals. All egg coat subunits contain a conserved protein-protein interaction module-the "ZP domain"-that allows them to polymerize upon dissociation of a C-terminal propeptide containing an external hydrophobic patch (EHP). Recently, the first crystal structures of a ZP domain protein, sperm receptor ZP subunit zona pellucida glycoprotein 3 (ZP3), have been reported, giving a glimpse of the structural organization of the ZP at the atomic level and the molecular basis of gamete recognition in vertebrates. The ZP module is divided in two related immunoglobulin-like domains, ZP-N and ZP-C, that contain characteristic disulfide bond patterns and, in the case of ZP-C, also incorporate the EHP. This segment lies at the interface between the two domains, which are connected by a long loop carrying a conserved O-glycan important for binding to sperm in vitro. The structures explain several apparently contradictory observations by reconciling the variable disulfide bond patterns found in different homologues of ZP3 as well as the multiple ZP3 determinants alternatively involved in gamete interaction. These findings have implications for our understanding of ZP subunit biogenesis; egg coat assembly, architecture, and interaction with sperm; structural rearrangements leading to postfertilization hardening of the ZP and the block to sperm binding; and the evolutionary origin of egg coats.  相似文献   

5.
During the course of fertilization in mammals, free-swimming sperm bind tightly to receptors located in the egg extracellular coat, or zona pellucida. Recently, the hamster sperm receptor, a 56,000 Mr zona pellucida glycoprotein called hZP3, was identified and partially characterized (C. C. Moller et al., (1990). Dev. Biol. 137, 276-286). Here, we describe genomic cloning of hZP3, certain organizational features of the hZP3 gene, and primary structures of hZP3 mRNA and polypeptide. The findings are compared with reported results of comparable analyses of the mouse sperm receptor, an 83,000 Mr zona pellucida glycoprotein called mZP3. Such comparisons reveal a high degree of conservation of genomic organization and polypeptide structure for the two mammalian sperm receptors, despite the considerable difference in their Mrs. These findings are of interest in view of the extremely restricted expression of the ZP3 gene during development and the important role of ZP3 oligosaccharides in gamete adhesion.  相似文献   

6.
At fertilization, spermatozoa bind to the zona pellucida (ZP1, ZP2, ZP3) surrounding ovulated mouse eggs, undergo acrosome exocytosis and penetrate the zona matrix before gamete fusion. Following fertilization, ZP2 is proteolytically cleaved and sperm no longer bind to embryos. We assessed Acr3-EGFP sperm binding to wild-type and huZP2 rescue eggs in which human ZP2 replaces mouse ZP2 but remains uncleaved after fertilization. The observed de novo binding of Acr3-EGFP sperm to embryos derived from huZP2 rescue mice supports a ;zona scaffold' model of sperm-egg recognition in which intact ZP2 dictates a three-dimensional structure supportive of sperm binding, independent of fertilization and cortical granule exocytosis. Surprisingly, the acrosomes of the bound sperm remain intact for at least 24 hours in the presence of uncleaved human ZP2 regardless of whether sperm are added before or after fertilization. The persistence of intact acrosomes indicates that sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. A filter penetration assay suggests an alternative mechanism in which penetration into the zona matrix initiates a mechanosensory signal transduction necessary to trigger the acrosome reaction.  相似文献   

7.
Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1-3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm-egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy.  相似文献   

8.
《The Journal of cell biology》1993,123(6):1431-1440
The mammalian egg must be fertilized by only one sperm to prevent polyploidy. In most mammals studied to date, the primary block to polyspermy occurs at the zona pellucida, the mammalian egg coat, after exocytosis of the contents of the cortical granules into the perivitelline space. The exudate acts on the zona, causing it to lose its ability to bind sperm and to be penetrated by sperm previously bound to the zona. However, the cortical granule components responsible for the zona block have not been identified. Studies described herein demonstrate that N-acetylglucosaminidase is localized in cortical granules and is responsible for the loss in sperm-binding activity leading to the zona block to polyspermy. Before fertilization, sperm initially bind to the zona by an interaction between sperm surface GalTase and terminal N-acetylglucosamine residues on specific oligosaccharides of the zona glycoprotein ZP3 (Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Nature (Lond.). 357:589-593). These GalTase-binding sites are lost from ZP3 after fertilization, an effect that can be duplicated by N-acetylglucosaminidase treatment. Therefore, N-acetylglucosaminidase, or a related glycosidase, may be present in cortical granules and be responsible for ZP3's loss of sperm-binding activity at fertilization. Of eight glycosidases assayed in exudates of ionophore-activated eggs, N-acetylglucosaminidase was 10-fold higher than any other activity. The enzyme was localized to cortical granules using immunoelectron microscopy. Approximately 70 or 90% of the enzyme was released from cortical granules after ionophore activation or in vivo fertilization, respectively. The isoform of N- acetylglucosaminidase found in cortical granules was identified as beta- hexosaminidase B, the beta, beta homodimer. Inhibition of N- acetylglucosaminidase released from activated eggs, with either competitive inhibitors or with specific antibodies, resulted in polyspermic binding to the zona pellucida. Another glycosidase inhibitor or nonimmune antibodies had no effect on sperm binding to activated eggs. Therefore, egg cortical granule N-acetylglucosaminidase is released at fertilization, where it inactivates the sperm GalTase- binding site, accounting for the block in sperm binding to the zona pellucida.  相似文献   

9.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

10.
Although details of the molecular mechanism are not yet clear, considerable evidence suggests that the egg-specific extracellular matrix component ZP3 regulates an essential event of sperm function, the acrosome reaction. Spatial control of this exocytotic event appears to be exerted by immobilization of the triggering ligand, ZP3, in the zona pellucida matrix surrounding the egg. Our data suggest that the signal transduction pathway in sperm activated by this ligand involves highly conserved components that are involved in many other eukaryotic signalling events. Recent experiments indicate that the murine zona pellucida glycoprotein ZP3 regulates acrosomal exocytosis by aggregating its corresponding receptors (ZP3-Rs) located in the mouse sperm plasma membrane. In other experiments, we have identified a putative ZP3-R of mouse sperm with Mr 95,000. Indirect immunofluorescence localizes this ZP3-R, termed p95, to the acrosomal region of the mouse sperm head, which is the anticipated location for ZP3-Rs. Membrane fractionation studies indicate that p95 cofractionates with a plasma membrane-enriched preparation from sperm that contains zona pellucida-receptor activity. In addition to its role as a ZP3-R, p95 also serves as a substrate for a tyrosine kinase in response to zona pellucida binding. On the basis of the data presented here, and borrowing heavily from findings for other signalling systems, we have formulated two testable hypotheses that are compatible with the available data: either p95 is itself a protein tyrosine kinase receptor, or p95 serves as a ZP3 receptor and is separate from a protein tyrosine kinase that is activated during gamete interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

12.
All vertebrates have an egg shell that surrounds ovulated eggs and plays critical roles in gamete recognition. This extracellular matrix is known as the zona pellucida in eutherian mammals and consists of three glycoproteins, ZP1, ZP2 and ZP3 in the mouse. To investigate the role of ZP1 in fertilization and early development, we have used targeted mutagenesis in embryonic stem cells to create mouse lines (Zp1(tm/tm)) lacking ZP1. Although a zona pellucida composed of ZP2 and ZP3 was formed around growing Zp1(tm/tm) oocytes, the matrix was more loosely organized than zonae around normal oocytes. In some Zp1 null follicles, this structural abnormality resulted in ectopic clusters of granulosa cells, lodged between the zona matrix and the oolemma, that perturbed normal folliculogenesis. Comparable numbers of eggs were ovulated from Zp1 null females and normal females following hormonal stimulation. However, after mating with males, fewer two-cell embryos were recovered from Zp1 null females, and their litters were significantly smaller than those produced by normal mice. Therefore, although mouse ZP1 is not essential for sperm binding or fertilization, it is required for the structural integrity of the zona pellucida to minimize precocious hatching and reduced fecundity.  相似文献   

13.
The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, and ZP3), of which ZP2 is proteolytically cleaved after gamete fusion to prevent polyspermy. This cleavage is associated with exocytosis of cortical granules that are peripherally located subcellular organelles unique to ovulated eggs. Based on the cleavage site of ZP2, ovastacin was selected as a candidate protease. Encoded by the single-copy Astl gene, ovastacin is an oocyte-specific member of the astacin family of metalloendoproteases. Using specific antiserum, ovastacin was detected in cortical granules before, but not after, fertilization. Recombinant ovastacin cleaved ZP2 in native zonae pellucidae, documenting that ZP2 was a direct substrate of this metalloendoprotease. Female mice lacking ovastacin did not cleave ZP2 after fertilization, and mouse sperm bound as well to Astl-null two-cell embryos as they did to normal eggs. Ovastacin is a pioneer component of mouse cortical granules and plays a definitive role in the postfertilization block to sperm binding that ensures monospermic fertilization and successful development.  相似文献   

14.
The mammalian zona pellucida is an extracellular matrix surrounding the oocyte, and is composed of three major glycoproteins, ZP1, ZP2, and ZP3. Previous studies have suggested that the sperm receptor activity of the zona pellucida resides in specific oligosaccharide chains on the ZP3 glycoprotein. However, the nature of the terminal monosaccharide(s) on these glycosidic chains to which sperm bind is a matter of active debate. Evidence has been presented to support a role for at least three distinct monosaccharides in sperm binding, alpha-galactose, L-fucose on Lewis X structures, and beta-N-acetylglucosamine. Previous studies have shown that beta-N-acetylglucosamine is uniformly distributed throughout the zona matrix. In this study, we have investigated the expression and distribution of alpha-galactose and fucose moieties during the maturation of the zona pellucida in mouse, rat, and hamster. Interestingly, alpha-galactose residues are expressed only during later stages of zona secretion and, consequently, are confined to the inner portions of the mature zona pellucida in mouse and rat. In hamster, alpha-galactose residues are only detectable in the zona pellucida of ovulated eggs, and are not found in ovarian oocytes. Fucosyl residues linked to Lewis X glycosides are not detectable at any stage of zona maturation in these three species, whereas fucose linked to N-linked core oligosaccharides are present throughout the zona. These studies indicate a previously unappreciated heterogeneity in the composition of zona glycosides. The specific localization of alpha-galactose residues to the inner portions of the zona matrix suggest a role in the later stages of sperm penetration through the zona. Finally, due to their absence from the zona surface, alpha-galactose and Lewis X fucosyl residues are not likely to be mediators of primary sperm binding.  相似文献   

15.
Complementary adhesion molecules are located on the surface of mouse eggs and sperm. These molecules support species-specific interactions between sperm and eggs that lead to gamete fusion (fertilization). Modification of these molecules shortly after gamete fusion assists in prevention of polyspermic fertilization. mZP3, an 83,000-Mr glycoprotein located in the egg extracellular coat, or zona pellucida, serves as primary sperm receptor. Gamete adhesion in mice is carbohydrate-mediated, since sperm recognize and bind to certain mZP3 serine/threonine- (O-) linked oligosaccharides. As a consequence of binding to mZP3, sperm undergo the acrosome reaction, which enables them to penetrate the zona pellucida and fertilize the egg. A 56,000-Mr protein called sp56, which is located in plasma membrane surrounding acrosome-intact mouse sperm heads, is a putative primary egg-binding protein. It is suggested that sp56 recognizes and binds to certain mZP3 O-linked oligosaccharides. Acrosome-reacted sperm remain bound to eggs by interacting with mZP2, a 120,000-Mr zona pellicida glycoprotein. Thus, mZP2 serves as secondary sperm receptor. Perhaps a sperm protease associated with inner acrosomal membrane, possibly (pro)acrosin, serves as secondary egg-binding protein. These and, perhaps, other egg and sperm surface molecules regulate fertilization in mice. Homologous molecules apparently regulate fertilization in other mammals.  相似文献   

16.
ZP3 is a protein in the mammalian egg coat (zona pellucida) that binds sperm and stimulates acrosomal exocytosis, enabling sperm to penetrate the zona pellucida. The nature of the ZP3 receptor/s on sperm is a matter of considerable debate, but most evidence suggests that ZP3 binds to beta-1,4-galactosyltransferase-I (GalTase) on the sperm surface. It has been suggested that ZP3 induces the acrosome reaction by crosslinking GalTase, activating a heterotrimeric G protein. In this regard, acrosomal exocytosis is sensitive to pertussis toxin and the GalTase cytoplasmic domain can precipitate G(i) from sperm lysates. Sperm from mice that overexpress GalTase bind more soluble ZP3 and show accelerated G protein activation, whereas sperm from mice with a targeted deletion in GalTase have markedly less ability to bind soluble ZP3, undergo the ZP3-induced acrosome reaction, and penetrate the zona pellucida. We have examined the ability of GalTase to function as a ZP3 receptor and to activate heterotrimeric G proteins using Xenopus laevis oocytes as a heterologous expression system. Oocytes that express GalTase bound ZP3 but did not bind other zona pellucida glycoproteins. After oocyte maturation, ZP3 or GalTase antibodies were able to trigger cortical granule exocytosis and activation of GalTase-expressing eggs. Pertussis toxin inhibited GalTase-induced egg activation. Consistent with G protein activation, both ZP3 and anti-GalTase antibodies increased GTP-gamma[(35)S] binding as well as GTPase activity in membranes from eggs expressing GalTase. Finally, mutagenesis of a putative G protein activation motif within the GalTase cytoplasmic domain eliminated G protein activation in response to ZP3 or anti-GalTase antibodies. These results demonstrate directly that GalTase functions as a ZP3 receptor and following aggregation, is capable of activating pertussis toxin-sensitive G proteins leading to exocytosis.  相似文献   

17.
For sperm to fertilize eggs, they must first bind to the thick zona pellucida (ZP) that surrounds the plasma membrane of all unfertilized mammalian eggs. An extensive literature suggests that mouse sperm recognize and bind to a specific ZP glycoprotein called mZP3. However, the role of individual ZP glycoproteins in binding of mouse sperm to eggs has been called into question by recent transgenic experiments with null mice. Results of such experiments have been interpreted to mean that binding of sperm depends on the supramolecular structure of the ZP, not on an individual ZP glycoprotein. Here, it is argued that results of these transgenic experiments actually are consistent with the prevailing view of gamete recognition that implicates a specific ZP glycoprotein in both binding of mouse sperm to eggs and induction of the acrosome reaction.  相似文献   

18.
The zona pellucida (ZP) surrounding the mammalian oocyte is composed of three glycoprotein components (ZPA, ZPB, and ZPC). Mammalian sperm bind to carbohydrate chains of a ZP glycoprotein in the initial phase of fertilization. Sperm-ligand carbohydrate chains have been characterized in mouse, cow, and pig. In pigs, triantennary/tetraantennary neutral complex-type chains from ZPB/ZPC mixture possess stronger sperm-binding activity than those of biantennary chains (Kudo et al., 1998: Eur J Biochem 252:492-499). Most of these oligosaccharides have beta-galactosyl residues at the nonreducing ends. This study used two in vitro competition assays to investigate the participation of the nonreducing terminal beta-galactosyl residues of the ligand active chains in porcine sperm binding. The removal of the nonreducing terminal beta-galactosyl residues from either the ligand active carbohydrate chains or endo-beta-galactosidase-digested glycoproteins significantly reduced their inhibition of sperm-egg binding, indicating that the beta-galactosyl residues at the nonreducing ends are involved in porcine sperm-egg binding. A correlation between the sperm-binding activity and in vitro fertilization rate is also presented.  相似文献   

19.
Glycobiology of sperm-egg interactions in deuterostomes   总被引:4,自引:0,他引:4  
The process of fertilization begins when sperm contact the outermost egg investment and ends with fusion of the two haploid pronuclei in the egg cytoplasm. Many steps in fertilization involve carbohydrate-based molecular recognition between sperm and egg. Although there is conservation of gamete recognition molecules within vertebrates, their homologues have not yet been discovered in echinoderms and ascidians (the invertebrate deuterostomes). In echinoderms, long sulfated polysaccharides act as ligands for sperm receptors. Ascidians employ egg coat glycosides that are recognized by sperm surface glycosidases. Vertebrate egg coats contain zona pellucida (ZP) family glycoproteins, whose carbohydrates bind to sperm receptors. Several candidate sperm receptors for vertebrate ZP proteins have been identified and are discussed here. This brief review focuses on new information concerning fertilization in deuterostomes (the phylogenetic group including echinoderms, ascidians, and vertebrates) and highlights protein-carbohydrate interactions involved in this process.  相似文献   

20.
The zona pellucida surrounding ovulated mouse eggs contains three glycoproteins, two of which (ZP2 and ZP3) are reported sperm receptors. After fertilization, the zona pellucida is modified ad minimus by cleavage of ZP2, and sperm no longer bind. Crosstaxa sperm binding is limited among mammals, and human sperm do not bind to mouse eggs. Using transgenesis to replace mouse ZP2 and/or ZP3 with human homologs, mouse lines with human-mouse chimeric zonae pellucidae have been established. Unexpectedly, mouse, but not human, sperm bind to huZP2 and huZP2/huZP3 rescue eggs, eggs fertilized in vitro with mouse sperm progress to two-cell embryos, and rescue mice are fertile. Also unanticipated, human ZP2 remains uncleaved after fertilization, and mouse sperm continue to bind early rescue embryos. These observations are consistent with a model in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号