首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple method for separation of large quantities of isolated metaphase chromosomes in Single-Tube Partition (STP), using hydrophobic ligand in an aqueous two-phase system is presented. The two-phase system is composed of an aqueous solution of Dextran 500 and poly(ethylene) glycol 6000 (PEG). The concentration of chromosomes to be separated has no influence on the distribution behaviour in the partition system and up to 10(7) chromosomes can be used in a phase system as small as 3-5 g (5 ml tube). Different groups of chromosomes differ in their distribution in the two phases and the introduction of PEG with covalently attached hydrophobic ligand provides a means of controlling the distribution of chromosomes. A combination of positively charged trimethylaminomethane PEG (TMA-PEG) together with palmitat PEG (P-PEG) gives a fairly good condition for separating chromosomes on the basis of their net surface charge differences.  相似文献   

2.
DNA from isolated Chinese hamster ovary (CHO) metaphase chromosomes can be obtained in three different molecular weight classes. The two largest forms have sedimentation coefficients of 80 and 120 S at 7,500 rpm. Based on sedimentation and speed dependence analysis these have molecular weights of 220 million and above 5,000 million, and are thought to be analogs of DNA classes observed in a prior study of human metaphase chromosomes. An extract can be converted to primarily the 80 S form through alkaline pH treatment of metaphase DNA. The third class (45 S DNA) is formed as a result of metaphase chromosome exposure to the nuclease Bal31, and has a mass distribution analogous to the CHO replicon.  相似文献   

3.
Studies on the application of the techniques of counter-current distribution (CCD) in aqueous two-phase systems and multiple sedimentation for the fractionation of metaphase chromosomes are presented. The two-phase systems were composed of aqueous solutions of Dextran 500 and poly(ethylene)glycol 6000 (PEG). It has been found that different groups of chromosomes differ in their distribution between the two phases and that the introduction of PEG with covalently attached positively or negatively charged groups provides a means of steering the distribution of chromosomes. A rough fractionation of chromosomes on the basis of size is possible by the technique of multiple sedimentation and this, in combination with CCD, yields 10 fractions of chromosomes. Partition and CCD in aqueous two-phase system separate chromosomes according to their surface properties and may prove useful for isolation of individual chromosomes in bulk.  相似文献   

4.
The metaphase appearance of quadruple chromosomes in colchicine-treated CHO cells was compared between air-dried and gently squashed preparations. A marked difference in morphology between the two methods suggested that the planar alignment of quadruple chromosomes is an artifact of the spreading process and that quadruple chromosomes are organized within the nucleus in a three-dimensional configuration. By analyzing the alignment of the original and replicated strands, using BrdU incorporation, the three-dimensional orientation of the chromatids in quadruple chromosomes could be traced. This analysis led to a new model for DNA replication. According to this model, an opening of a DNA base pair which rotates about 90 degrees with respect to the deoxyribose phosphate backbone precedes DNA replication, resulting in the formation of the newly replicated strands perpendicular to the original plane of the base pair. This model, although derived from endoreduplication, may be applicable to a general scheme for DNA replication during normal chromosome duplication.  相似文献   

5.
Sister chromatids of metaphase chromosomes can be differentially stained if the cells have replicated their DNA semiconservatively for two cell cycles in a medium containing 5-bromodeoxyuridine (BrdU). When prematurely condensed chromosomes (PCC) are induced in cells during the second S phase after BrdU is added to the medium, the replicated chromosome segments show sister chromatid differential (SCD) staining. Employing this PCC-SCD system on synchronous and asynchronous Chinese hamster ovary (CHO) cells, we have demonstrated that the replication patterns of the CHO cells can be categorized into G1/S, early, early-mid, mid-late, and late S phase patterns according to the amount of replicated chromosomes. During the first 4 h of the S phase, the replication patterns show SCD staining in chains of small chromosome segments. The amount of replicated chromosomes increase during the mid-late and late S categories (last 4 h). Significantly, small SCD segments are also present during these late intervals of the S phase. Measurements of these replicated segments indicate the presence of characteristic chromosome fragment sizes between 0.2 to 1.2 m in all S phase cells except those at G1/S which contain no SCD fragments. These small segments are operationally defined as chromosome replicating units or chromosomal replicons. They are interpreted to be composed of clusters of molecular DNA replicons. The larger SCD segments in the late S cells may arise by the joining of adjacent chromosomal replicons. Further application of this PCC-SCD method to study the chromosome replication process of two other rodents, Peromyscus eremicus and Microtus agrestis, with peculiar chromosomal locations of heterochromatin has demonstrated an ordered sequence of chromosome replication. The euchromatin and heterochromatin of the two species undergo two separate sequences of decondensation, replication, and condensation during the early-mid and mid-late intervals respectively of the S phase. Similar-sized chromosomal replicons are present in both types of chromatin. These data suggest that mammalian chromosomes are replicated in groups of replicating units, or chromosomal replicons, along their lengths. The organization and structure of these chromosomal replicons with respect to those of the interphase nucleus and metaphase chromosomes are discussed.  相似文献   

6.
Adrian T. Sumner 《Chromosoma》1998,107(6-7):486-490
Diplochromosomes, consisting of four chromatids lying side-by-side, instead of the normal two, are produced when cells go through two rounds of DNA replication without separation of chromatids. They are thus an indication of the failure of the normal chromosome separation mechanism. In the present experiments, induction of diplochromosomes by inhibitors of topoisomerase II (Topo II) was used to provide further evidence that Topo II is required for separation of daughter chromosomes. Actively growing cultures of CHO cells were treated with Colcemid, and separated into metaphase and interphase fractions, each of which was treated for 2 h with the Topo II inhibitor being tested. The cells were then cultivated in fresh medium without inhibitor for periods of between 18 and 44 h, and metaphase cells once again accumulated by treatment with Colcemid. Chromosome preparations were made in the standard way and stained with Giemsa. Up to 2,000 metaphases were counted from each culture, and the proportion with diplochromosomes calculated. At appropriate concentrations, the Topo II inhibitors etoposide and mitoxantrone induced substantial levels of metaphases with diplochromosomes in cultures that had been treated when the cells were in interphase (up to 30% and 11%, respectively). Amsacrine, however, only produced a smaller proportion (4.7%) of metaphases with diplochromosomes after a much longer culture period following treatment. All the inhibitors caused severe chromosome damage. When used to treat metaphase cells, mitoxantrone and amsacrine only induced diplochromosomes after prolonged culture, although a small number of diplochromosomes were seen after etoposide treatment and a shorter period of culture. Results with cells treated in metaphase might indicate that Topo II is, in fact, not required for anaphase chromosome separation, although it is clearly important for segregation of newly replicated DNA. Received: 8 August 1998 / Accepted: 13 September 1998  相似文献   

7.
Characterization and application of soybean YACs to molecular cytogenetics   总被引:3,自引:0,他引:3  
Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.  相似文献   

8.
The clastogenic activities of diepoxybutane and bleomycin were comparatively studied on prematurely condensed interphase chromatin and metaphase chromosomes of Chinese hamster ovary cells. The yield of chromosomal aberrations was distinctly higher in G2-premature chromosome condensation as compared to metaphase. Most notably, the clastogenic activity of bleomycin was visible in premature chromosome condensation after application of much lower final concentrations than necessary for induction of chromosome aberrations in metaphase. In addition, the different mechanisms of action of both clastogens were reflected by the aberration yield in GI and G2 immediately after exposure. While bleomycin induced aberrations throughout all stages of interphase, diepoxybutane did not induce aberrations in GI or G2. Though certainly not a routine system for genotoxicity testing, premature chromosome condensation analyses provide a powerful opportunity to demonstrate relationships between DNA damage and repair, and the production of chromosomal changes at the site of their formation.Abbreviations BM bleomycin - BrdUrd bromodeoxyuridine - CHO Chinese hamster ovary - DEB diepoxybutane - DMSO dimethylsulfoxide - FCS fetal calf serum - PCC premature chromosome condensation, prematurely condensed chromosomes - PEG polyethylene glycol  相似文献   

9.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

10.
Proteome analysis of human metaphase chromosomes   总被引:7,自引:0,他引:7  
DNA is packaged as chromatin in the interphase nucleus. During mitosis, chromatin fibers are highly condensed to form metaphase chromosomes, which ensure equal segregation of replicated chromosomal DNA into the daughter cells. Despite >1 century of research on metaphase chromosomes, information regarding the higher order structure of metaphase chromosomes is limited, and it is still not clear which proteins are involved in further folding of the chromatin fiber into metaphase chromosomes. To obtain a global view of the chromosomal proteins, we performed proteome analyses on three types of isolated human metaphase chromosomes. We first show the results from comparative proteome analyses of two types of isolated human metaphase chromosomes that have been frequently used in biochemical and morphological analyses. 209 proteins were quantitatively identified and classified into six groups on the basis of their known interphase localization. Furthermore, a list of 107 proteins was obtained from the proteome analyses of highly purified metaphase chromosomes, the majority of which are essential for chromosome structure and function. Based on the information obtained on these proteins and on their localizations during mitosis as assessed by immunostaining, we present a four-layer model of metaphase chromosomes. According to this model, the chromosomal proteins have been newly classified into each of four groups: chromosome coating proteins, chromosome peripheral proteins, chromosome structural proteins, and chromosome fibrous proteins. This analysis represents the first compositional view of human metaphase chromosomes and provides a protein framework for future research on this topic.  相似文献   

11.
The premature chromosome condensation (PCC) technique was used to study several factors that determine the yield of chromosome fragments as observed in interphase cells after irradiation. In addition to absorbed dose and the extent of chromosome condensation at the time of irradiation, changes in chromosome conformation as cells progressed through the cell cycle after irradiation affected dramatically the yield of chromosome fragments observed. As a test of the effect of chromosome decondensation, irradiated metaphase Chinese hamster ovary (CHO) cells were allowed to divide, and the prematurely condensed chromosomes in the daughter cells were analyzed in their G1 phase. The yield of chromosome fragments increased as the daughter cells progressed toward S phase and chromosome decondensation occurred. When early G1 CHO cells were irradiated and analyzed at later times in G1 phase, an increase in chromosome fragmentation again followed the gradual increase in chromosome decondensation. As a test of the effect of chromosome condensation, G0 human lymphocytes were irradiated and analyzed at various times after fusion with mitotic CHO cells, i.e., as condensation proceeded. The yield of fragments observed was directly related to the amount of chromosome condensation allowed to take place after irradiation and inversely related to the extent of chromosome condensation at the time of irradiation. It can be concluded that changes in chromosome conformation interfered with rejoining processes. In contrast, resting chromosomes (as in G0 lymphocytes irradiated before fusion) showed efficient rejoining. These results support the hypothesis that cytogenetic lesions become observable chromosome breaks when chromosome condensation or decondensation occurs during the cell cycle.  相似文献   

12.
Isolated metaphase chromosomes from KB cells were used as template in an in vitro DNA synthesis assay. In these conditions, no synthesis was noticed, confirming template inactivity of isolated metaphase chromosomes. DNA synthesis was noticed after a pretreatment with either methanol-acetic acid or RNase A. Analysis of in vitro synthesized polydeoxyribonucleotides showed two fractions of 4 S and 7-8 S. These results suggest the presence in metaphase chromosome of single stranded DNA sequences. Such sequences are shown in DNA extracted from chromosomes. They would preexist in this organelle and would be unmasked by the treatments that restore template activity of metaphase chromosome.  相似文献   

13.
Radiation-reduced chromosomes provide valuable reagents for cloning and mapping genes, but they require multiple rounds of x-ray deletion mutagenesis to excise unwanted chromosomal DNA while maintaining physical attachment of the desired DNA to functional host centromere and telomere sequences. This requirement for chromosomal rearrangements can result in undesirable x-ray induced chromosome chimeras where multiple non-contiguous chromosomal fragments are fused. We have developed a cloning system for maintaining large donor subchromosomal fragments of mammalian DNA in the megabase size range as acentric chromosome fragments (double-minutes) in cultured mouse cells. This strategy relies on randomly inserted selectable markers for donor fragment maintenance. As a test case, we have cloned random segments of Chinese hamster ovary (CHO) chromosomal DNA in mouse EMT-6 cells. This was done by cotransfecting plasmids pZIPNeo and pSV2dhfr into DHFR-CHO cells followed by isolation of a Neo + DHFR + CHO donor colony and radiation-fusion-hybridization (RFH) to EMT-6 cells. We then selected for initial resistance to G418 and then to increasing levels of methotrexate (MTX). Southern analysis of pulsed-field gel electrophoresis of rare-cutting restriction endonuclease digestions of DNA from five RFH isolates indicated that all five contain at least 600 kb of unrearranged CHO DNA. In situ hybridization with the plasmids pZIPNeo and pSV2dhfr to metaphase chromosomes of MTX-resistant hybrid EMT-6 lines indicated that these markers reside on double-minute chromosomes.  相似文献   

14.
The sera from patients with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) variation of the autoimmune disease scleroderma contain autoantibodies that specifically recognize the kinetochore by immunofluorescence. Two major antigens of molecular masses 18 and 80 kD are consistently identified by Western blotting of proteins of isolated chromosomes using CREST sera. In this paper, the possible roles that these two proteins play in the interaction of metaphase chromosomes with tubulin and microtubules are examined using two different procedures. In one set of experiments. Chinese hamster ovary (CHO) chromosomes were extracted with 1-2 M NaCl before incubating with phosphocellulose-purified tubulin under in vitro microtubule assembly conditions. After this treatment, the kinetochores of the residual chromosome scaffolds can still initiate the in vitro assembly of microtubules. Immunoblots of the chromosome scaffold proteins demonstrate that the 18-kD protein has been solubilized by the 1-2 M NaCl extraction, suggesting that this protein is not essential for microtubule assembly at the kinetochore. In a second approach, tubulin was covalently cross-linked to kinetochores of CHO chromosomes using the reversible cross-linking reagent dithiobis (succinimidyl propionate). After DNase I digestion, the chromosomes were solubilized and subjected to anti-tubulin affinity chromatography. Tubulin-kinetochore protein complexes were specifically eluted and analyzed by PAGE and immunoblotting with scleroderma CREST serum. Only a small number of proteins were eluted from the antitubulin affinity column as shown by Coomassie Blue-stained gels. In addition to tubulin, an 80-kD polypeptide, bands at 110 and 24 kD, as well as a faint band at 54 kD, can be resolved. Several minor bands can also be seen in silver-stained gels. The 80-kD protein band from whole metaphase chromosomes reacted with scleroderma CREST serum by immunoblotting and therefore probably represents the major centromere antigen CENP-B. This report provides evidence for a specific protein complex on metaphase chromosomes that is contiguous with kinetochore-bound tubulin and may be involved in microtubule-kinetochore interactions during mitosis.  相似文献   

15.
Repetitive DNA sequences were detected directly on somatic metaphase chromosome spreads from soybean root tips using fluorescentin situ hybridization. Methods to spread the forty small metaphase chromosomes substantially free of cellular material were developed using protoplasts. The specific DNA probe was a 1.05 kb internal fragment of a soybean gene encoding the 18S ribosomal RNA subunit. Two methods of incorporating biotin residues into the probe were compared and detection was accomplished with fluorescein-labeled avidin. The rDNA probe exhibits distinct yellow fluorescent signals on only two of the forty metaphase chromosomes that have been counterstained with propidium iodide. This result agrees with our previous analyses of soybean pachytene chromosome [27] showing that only chromosome 13 is closely associated with the nucleolus organizer region. Fluorescentin situ hybridization with the rDNA probe was detected on three of the forty-one metaphase chromosomes in plants that are trisomic for chromosome 13.  相似文献   

16.
We have produced metaphase spindles and induced them to enter anaphase in vitro. Sperm nuclei were added to frog egg extracts, allowed to replicate their DNA, and driven into metaphase by the addition of cytoplasm containing active maturation promoting factor (MPF) and cytostatic factor (CSF), an activity that stabilizes MPF. Addition of calcium induces the inactivation of MPF, sister chromatid separation and anaphase chromosome movement. DNA topoisomerase II inhibitors prevent chromosome segregation at anaphase, demonstrating that the chromatids are catenated at metaphase and that decatenation occurs at the start of anaphase. Topoisomerase II activity towards exogenous substrates does not increase at the metaphase to anaphase transition, showing that chromosome separation at anaphase is not triggered by a bulk activation of topoisomerase II.  相似文献   

17.
水稻中期染色体和DNA纤维的高效制备技术   总被引:2,自引:0,他引:2  
水稻中期染色体和DNA纤维制备是水稻分子细胞遗传学研究中的关键技术。目前,这两个技术还有很多不足,该研究建立了高效制备水稻中期染色体和DNA纤维的方法。该方法制备的染色体,分裂相多、杂质少、背景清晰、染色体分散且形态好,水稻根尖分生组织细胞的分裂指数高达25%。植物细胞的细胞壁是制备DNA纤维的最大障碍,所以必须先提取细胞核,然后裂解细胞核释放出DNA纤维。在这个研究中,还建立了一个用刀切法分离细胞核,进而用SDS裂解核膜,用载玻片拖出DNA来制备水稻DNA纤维的方法。该方法制备的DNA纤维多呈平行的细线,背景清晰,伸展的程度均匀,适合于原位杂交。  相似文献   

18.
首先对显微分离出的黑麦(SecalecerealeL.)1R染色体进行了两轮Sau3A连接接头介导的PCR扩增(LA_PCR)。经Southern杂交证实这些染色体扩增片段来源于基因组DNA之后,再利用1R染色体的第二轮扩增产物、黑麦基因组DNA、rDNA基因为探针,与其根尖细胞中期分裂相进行染色体原位杂交,发现微分离的1R染色体体外扩增产物中包含大量的非该染色体特异性重复序列,而其信息量却较黑麦总基因组少;当以适量的黑麦基因组DNA进行封阻时,微分离染色体的体外扩增产物成功地被重新定位在中期分裂相的一对1R染色体上,说明微分离1R染色体的PCR扩增产物中的确包含了该染色体特异性的片段。此外,以从1R染色体微克隆文库中筛选出的一单、低拷贝序列和一高度重复序列分别为探针,染色体原位杂交检测发现,这一高度重复序列可能为端粒相关序列;而单、低拷贝序列却未检测到杂交信号。这些结果从不同侧面反映出染色体着染技术是证实微分离、微切割染色体的真实来源及筛选染色体特异性探针的有利工具。建立了可供参考的植物染色体着染实验体系,为染色体微克隆技术在植物中的进一步应用提供了便利。  相似文献   

19.
Summary Individual S phase allocyclic chromosomes have been analyzed in Bloom syndrome lymphocytes, in cells with an r(9), and in hypotetraploid Ehrlich mouse ascites cells treated with 1-methyl-2-benzyl hydrazine. On the basis of the following observations, we conclude that such chromosomes more or less reflect their domains in interphase: (1) The S phase allocyclic chromosomes have the same structure as S phase prematurely condensed chromatin (PCC) in fused cells; in other words they form limited areas of chromatin dots; (2) the allocyclic chromosome is the only chromosome in a metaphase plate which synthesizes DNA simultanneously with interphase nuclei; (3) the size of the allocyclic chromosomes is related to the size of the corresponding metaphase chromosome; and (4) the S phase allocyclic chromosomes resemble closely the chromosome domains in interphase made visible with biotinylated human DNA. A variety of evidence shows that most allocyclic chromosomes are simply left behind in their cycle, which presumably is caused by a deletion or inactivation of a hypothetical coiling center situated on each chromosome arm.  相似文献   

20.
Two substitution lines, designated as 930498 and 930483, and one addition line, designated as 930029, via Fo immature embryo culture of Triticum aestivum x octoploid triticale ( x Triti-cosecale Wittmack) were identified. Fluorescence in situ hybridization (FISH) using total genomic DNA of rye ( Secale cereale L. ) as probe corroborated the existence of rye chromosomes, further confirmed through chromosome paring at meiotic metaphase 1, C-banding and glutenin SDS- PAGE. The results demonstrated that the two substitution lines are ID/IR, and the addition line is also IR addition. Rye chromosomes that are distinct to the red-colored wheat chromosomes appear yellow-green at mitotic metaphase after FISH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号